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Abstract

By using an extension of Desargues theorem, and the extendedDesarguesian configuration thereof, the analytical definition for
the stereohomology geometric transformation in projective geometry is proposed in this work. A series of such commonlyused
geometric transformations in computer graphics as centralprojection, parallel projection, centrosymmetry, reflection and translation
transformation, which can be included in stereohomology, are thus analytically defined from this point of view. It has been proved
that, the transformation matrices of stereohomology are actually equivalent to the existing concept in numerical analysis: elementary
matrices. Based on the meaning of elementary matrices in projective geometry thus obtained, a novel approach of 3D reconstructing
objects from multiple views is proposed together with some of the concepts, principles and rules for its applications incomputer
graphics.
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1. Introduction

As is well known that, such geometric transformations as trans-
lation transformation, perspective projection in computer graph-
ics, can be represented as square transformation matrices only
through the homogeneous coordinate representation.

Yet it is surprising to see that presently there is no rigor-
ous definition for the geometric transformations represented by
square matrices based on homogeneous coordinates. Ideally, a
geometric transformation and its transformation matrix, should
be defined and identified reference coordinate system indepen-
dently, while the conventional representation method and the
definitions in computer graphics, at least for geometric trans-
formation matrices, are not in such a way.

Actually, the conventional definitions for the commonly used
geometric transformations and their transformation matrices,
are not perfect, or even not theoretically rigorous in the fol-
lowing two aspects:

First, by using homogeneous coordinates, we assume that
the geometric transformations are defined in projective space
not in Euclidean space. As we know, in most of the curren-
t computer graphics textbooks, the geometric transformations,
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for example, central projection, and parallel projection,are ac-
tually defined in Euclidean space by using the concepts of mea-
sure or distance directly or implicitly which will be inapplicable
in projective space.

Second, conventionally, the geometric transformation ma-
trices can also be established for perspective projection,trans-
lation transformation and so forth, based on homogeneous co-
ordinates representation in special reference coordinatesystem-
s. While mainly due to the limitations of the traditional rep-
resentations, there is actually no simple and straightforward
reference-coordinate-system independent method for transfor-
mation matrix establishing.

Since most of the geometric transformations can be repre-
sented by square transformation matrices only through homo-
geneous coordinates, an improved representation for geometric
transformations better be based on homogeneous coordinates in
projective space.

For geometric transformations which can be represented by
square matrices, we have the following conclusion:

Theorem 0. The different transformation matrices in different
reference coordinate systems of the same geometric transfor-
mation are similar matrices.

Proof. Suppose a geometric transformationT0 in projective s-
pace, which transforms an arbitrary point or hyperplaneX into
Y; and the homogeneous coordinates ofX andY in reference
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coordinate systems (I ) and (II ) are (x), (x)′, (y), (y)′ respec-
tively; and the coordinate transformation matrix from the ref-
erence coordinate system (I ) to (II ) is a nonsingular matrixT,
i.e., (x)′ = T(x), (y)′ = T(y); Suppose the transformation matri-
ces ofT0 in different reference coordinate systems (I ) and (II )
are A andB respectively, i.e., (y) = A(x), (y)′ = B(x)′;. Then
we have:

(y)′ = T (y) = T A (x) = T A T−1 (x)′ (1)

SinceX is arbitrary, thenB = T A T−1, B andA are similar to
each other.

Theorem 0 indicates that, in order to define a geometric
transformation reference coordinate system independently, we
can take advantage of the inherent characteristics of the geomet-
ric transformation matrix, i.e., properties of the transformation
matrix regarding eigen value(s), eigenvector(s), and the geo-
metric meanings thereof.

Unless otherwise specified, the current work will be dis-
cussed only in the real field:R, and a geometric transforma-
tions will be a point (not hyperplane) transformation discussed
in onereference coordinate system. Therefore,T can be used
to represent both a transformation and the transformation ma-
trix thereof. Symbols like (s), (x),(x)i, (π) and so on, represent
the homogeneous coordinatecolumnvectors for the pointS, X,
Xi , and hyperplaneπ and so on, respectively.

2. Stereohomology

2.1. Extension of Desargues theorem & Desarguesian configu-
ration

Theorem 1(Extended Desargues theorem [1, 2]). In n- dimen-
sional projective space(26 n ∈ Z+), if the homogeneous coor-
dinate vectors of the n+1points X1, X2, ...,Xn, Xn+1, are linearly
independent, any n homogeneous coordinate vectors of the n+1
points Y1, Y2, ...,Yn, Yn+1, are also linearly independent, and
there exists a fixed point S , the homogeneous coordinate vector
of which is linearly dependent to those of any two of the corre-
sponding point pairs: Xi and Yi , ( i = 1, · · · , n+1 ). Then the
rank of the homogeneous coordinate vectors of the C2

n+1 inter-
section points of line pairs XiX j and YiYj , which will here be

defined as Si j =S ji
def
==XiX j ∩ YiYj (i , j, i , j = 1,· · ·, n+1),

should be n.

Proof. See [1].

Similar to the Desargues theorem and its inverse, the inverse
of Theorem 1 also is true.

Definition 1 (Extended Desarguesian configuration). If 2n+
3 points,X1, X2, · · · , Xn, Xn+1, S, Y1, Y2, · · · , Yn, Yn+1, meet
the constraints in both Theorem 1 and its inverse, then the con-
figuration that consists of all these points is an Extended Desar-
guesian configuration, denoted as

X1 X2 · · ·Xn Xn+1-S-Y1Y2 · · ·Yn Yn+1 (2)

2.2. Definition of stereohomology

Definition 2 (Generalized projective transformation). If the rank
of then+1 dimensional coefficient matrix (ti, j) of the following
transformation inn dimensional projective space is equal to or
greater thann, then the transformation in projective space is
called a generalized projective transformation ( 0, ρ ∈ R):





ρx′1= t1,1x1 + t1,2x2 + · · · + t1,n+1xn+1

ρx′2= t2,1x1 + t2,2x2 + · · · + t2,n+1xn+1

...
...

...
. . .

...

ρx′n+1 = tn+1,1x1+ tn+1,2x2+ · · · + tn+1,n+1xn+1

(3)

Definition 3 (invariant point). In projective space, if the homo-
geneous coordinate vector of a point is an eigenvector of a gen-
eralized projective transformationT , then the point is called an
invariant point ofT .

Definition 4 (General Invariant hyperplane). SupposeX is any
point in hyperplaneπ, if its corresponding pointX′ through a
generalized projective transformation matrixT , is also inπ,
thenπ is a general invariant hyperplane ofT .

Definition 5 (Invariant hyperplane). SupposeX is any point in
the general invariant hyperplaneπ of T , if X’s corresponding
point X′ coincides withX, thenπ is an invariant hyperplane of
T .

Definition 6 (null vector). If a generalized projective transfor-
mationT is singular, then there exists a point, denoted asX,
of which the homogeneous coordinate vector, (x), will be trans-
formed into (0, · · · , 0)⊤, to which there is no corresponding ge-
ometric point in projective space, such a column homogeneous
coordinate (x) is called anull vector forT .

Lemma1 (existence of “stereohomology center”). In n- dimen-
sional projective space, if a generalized projective transforma-
tion T has an invariant hyperplaneπ, then there exists a unique
fixed point, which is collinear with any point and its image point
throughT ; and whenT is nonsingular, the fixed point is an in-
variant point ofT ; whenT is singular, the fixed point is the
null vector ofT .

Proof. Denote the generalized projective transformation matrix
asT , and its invariant hyperplane asπ. Suppose the homoge-
neous coordinate vector of any pointX (denote its correspond-
ing point throughT asY) can be linearly expressed by that of
an arbitrary invariant pointH ∈ π(ρH · (h)=T (h), 0, ρH ∈ R is
the eigenvalue for all the points inπ ) and that of a fixed point
C < π as:

(x) = (h) + ω · (c) ω ∈ R (4)

therefore,Y’s homogeneous coordinate can be:

(y) =T · (x) = ρH · (h) + ω ·T · (c)

ρH ∈ R, and ω ∈ R (5)

From “Eq.(5)− Eq.(4)× ρH ”, we have:

(y) − ρH · (x) = ω · (T · (c) − ρH · (c))



Elementary Matrix Representation of Some Commonly Used Geometric Transformations 3

which indicates that there exist a unique fixed point, denoted as
S below(theuniquenesscan be proved throughproof by contra-
diction):

(s) = T · (c) − ρH · (c),

which is collinear toX and the correspondingY.
Since any line throughS is transformed into itself, thenS is

an invariant point whenT is nonsingular orS is thenull vector
whenT is singular (S < π in this case).

Definition 7 (Stereohomology). In n- dimensional projective
space, a generalized projective transformation is called astere-
ohomology, if (1) the coefficient matrix thereof has astereoho-
mology hyperplane(denoted asπ ), the homogeneous coordi-
nate vector of any point on which is an eigenvector of the trans-
formation matrix, and the rank of the vector set with all these
eigenvectors isn; and (2) there exists a fixed point ( calledstere-
ohomology center, denoted asS ), of which the homogeneous
coordinate vector is linearly dependent to those of any point in
then- dimensional projective space, and its corresponding point
through the generalized projective transformation.

According toLemma1, Definition 7 can actually be simpli-
fied as: a generalized projective transformation with an invari-
ant hyperplane.

Definition 8. (Elementary homology) An elementary homol-
ogy geometric transformation is a stereohomology, of which
the stereohomology center is not on the stereohomology hyper-
plane, i.e., the inner product of the homogeneous coordinate
vectors of the stereohomology center and the stereohomology
hyperplane, is not zero.

Definition 9. (Elementary perspective) An elementary perspec-
tive is a stereohomology, of which the stereohomology center
is on the stereohomology hyperplane.

Lemma2 (Existence & uniqueness theorem). For the Extended
Desarguesian Configuration (Eq.(2) in Definition 1), there ex-
ists a unique generalized projective transformation, denoted as
T , which transformsX1, X2,· · · Xn, Xn+1 andS into Y1, Y2,· · ·
Yn,Yn+1 andS(or null) respectively.

Proof. See [1].

The final form of the transformation matrixT 3d in 3- dimen-
sional projective space, which transformsA, B, C, D, into A′,
B′, C′, D′, andS into S (or null) in the extended Desargue-
sian configuration (Eq. (2) in Definition 1), respectively, will be
obtained in the following form [1] (The∆is and∆′i s are deter-
minants defined in [1]):

T
3d
= k×




a′1∆
′
1 b′1∆

′
2 c′1∆

′
3 d′1∆

′
4

a′2∆
′
1 b′2∆

′
2 c′2∆

′
3 d′2∆

′
4

a′3∆
′
1 b′3∆

′
2 c′3∆

′
3 d′3∆

′
4

a′4∆
′
1 b′4∆

′
2 c′4∆

′
3 d′4∆

′
4




×




a1∆1 b1∆2 c1∆3 d1∆4

a2∆1 b2∆2 c2∆3 d2∆4

a3∆1 b3∆2 c3∆3 d3∆4

a4∆1 b4∆2 c4∆3 d4∆4




−1

(6)

The square transformation matrix of stereohomology should
be obtained via more simple and direct method rather than that
in (Eq.(6)) from the coordinate information of an Extended De-
sarguesian Configuration.

Lemma3 (Existence of ann- dimensional Eigenspace). The
obtainedn+1 dimensional transformation matrix of generalized
projective transformationT in Lemma 2, has an eigenvalue
with geometric multiplicity ofn, i.e., there exists ann- dimen-
sional Eigenspace of the transformation matrix, and a hyper-
plance of the transformationT .

Proof. Here only gives the proof when the transformation ma-
trix is nonsingular, i.e., not only all the homogeneous coordi-
nate vectors (x)i are linearly independent, but all the vectors (y)i

are linearly independent. And the symbolT here will be used
to represent both thegeometric transformationand thetrans-
formation matrix.

To prove the current statement, we need to construct and use
the properties of the minimal polynomial of then+1-dimensinal
transformation matrixT .

First, since the homogeneous coordinate vector ofS can be
linearly expressed as:

(s) = λ1(x)1 + λ′1(y)1

= λ2(x)2 + λ′2(y)2

...
...

...
...

= λn+1(x)n+1 + λ′n+1(y)n+1

(7)

and since all then+1 homogeneous coordinate vectors of either
(x)i or (y)i ( i = 1,· · · , n+1 ) are linearly independent,∃ 0 , µi

∈ R (i = 1,· · · , n+1 ), which make (s) can be linearly expressed
as:

(s) =
n+1∑

i=1

µi (x)i (8)

Since (x)i and (y)i are the corresponding points through the
geometric transformationT (∀ i = 1, · · · , n+1), i.e., there
exist a series of 0, ρi ∈ R (i = 1, . . .,n+1), which satisfy:

ρi (y)i = T (x)i (i = 1, · · · , n+1) (9)
and ρs (s) = T (s) (10)

combine all the above results in Eq.(7, 8, 9, 10) together, we
will obtain the linear expression of (s) by (y)i in two different
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forms: (
n+1∑

i=1

µi

λi
− 1

)
(s) =

n+1∑

i=1

µiλ
′
i

λi
(yi) (11)

and

(s) =
1
ρs

T

n+1∑

i=1

µi(x)i =

n+1∑

i=1

ρiµi

ρs
(yi) (12)

Since the linear expression of (s) by (y)i should be unique
once the homogeneous coordinate vectors are selected, compar-
ing the corresponding factors before each (y)i, we can obtain:

ρiλi

λ′i
= const. (∀ i = 1, · · · , n+1) (13)

Since according to Eq. (10)

(s) =
1
ρs

T · (s) (14)

and according to Eq.(7)

(s) = λi(x)i + λ
′
i (yi)

= λi(x)i +
λ′i
ρi

T · (x)i

=
λi

ρs
T · (x)i+

λ′i
ρsρi

T
2 · (x)i (15)

∀ i = 1, · · · , n+1
Then from Eq.(15) we can obtain:

(T − ρsI)
(

T +
ρiλi

λ′i
I
)

(x)i = 0 (16)

∀ i = 1, · · · , n+1
Sinceρs is an eigenvalue of the transformation matrixT ,

andT , I,

(t − ρs)

(
t +

ρiλi

λ′i

)
(17)

is the minimal characteristic polynomial of the transformation
matrixT . Consequently,

− ρiλi

λ′i
= const. (18)

is also an eigenvalue of transformation matrixT , and then it
can be proved that the geometric multiplicity thereof isn.

Then prove that all the homogeneous coordinate vectors of
theC2

n+1 different intersection points, denoted as (s)i, j, (i , j, i,
j=1, · · · , n+1), are the associated eigenvectors of the eigenvalue
Eq. (18).

According to Eq. (7), which can be rewritten as:

(s) = λi(x)i + λ
′
i (y)i (i=1, · · · , n+1)

and 



(s)1,2 =(x)1 −(x)2 = (y)2 − (y)1

(s)2,3 =(x)2 −(x)3 = (y)3 − (y)2
...

...
...

...
...

(s)k,k+1=(x)k −(x)k+1= (y)k+1 − (y)k
...

...
...

...
...

(s)n,n+1=(x)n −(x)n+1= (y)n+1 − (yn)

(s)n+1,1=(x)n+1−(x)1 = (y)1 − (y)n+1

(19)

which can be rewritten as (i, j =1,· · · , n+1):

(s)i, j = λi(x)i − λ j(x) j

= λ′j(y) j − λ′i (y)i (20)
and

T · (s)i, j = T · (λi(x)i − λ j(x) j)

= λiρi(y)i − λ jρ j(y) j (21)

Comparing the linear expression of (s)i, j in Eq. (20) andT ·
(s)i, j in Eq. (21) by (y) j and (y)i , considering Eq. (13), we thus
can obtain that:

T · (s)i, j = −
ρiλi

λ′i
(s)i, j

∀ i , j, i, j = 1,· · ·, n+1 (22)
Since the rank of the vector set which consists of all the homo-
geneous coordinate vectors of theC2

n+1 intersection points isn,
and all the vectors are associated eigenvectors, the geometric
multiplicity of the associated eigenvalue isn.

WhenT is a singular matrix, the proof is similar with only
slight difference.

The above statement ofLemma3 is actually corresponding
to the extended Desargues theorem: Theorem 1; andLemma4
below will be corresponding to the inverse thereof.

Lemma4 (Existence of “stereohomology center”). In n- dimen-
sional real projective space, if a generalized projective transfor-
mation transforms the pointsX1, X2,· · · Xn,andXn+1 in extended
Desarguesian configuration ( Eq.(2) in Definition 1 )

into Y1, Y2,· · ·Yn,andYn+1 respectively, and there exists an
eigenvalue with geometric multiplicity ofn for then+1 dimen-
sional transformation matrixT . Then the homogeneous coor-
dinate vector ofS is an eigenvector ofT , and the correspond-
ing eigenvalue equals zero in case thatT is singular.

Proof. Proof is omitted here.

Lemma5 (“Stereohomologycenter ”Linear correlationship). For
the generalized projective transformationT , which transforms
X1, X2,· · · , Xn, Xn+1 andS in extended Desarguesian configu-
ration ( Eq.(2) in Definition 1 )

into Y1,Y2,· · · ,Yn, Yn+1 andS(or Null) respectively, for any
pointX, and its corresponding pointsY through the transforma-
tion T , the homogeneous coordinate vectors (x) and (y) of the
two points are linearly dependent to (s).

Proof. Since there exists an invariant hyperplaneπ of the trans-
formation perLemma3, according toLemma1, there exists a
fixed invariant point (s) which is the stereohomology center of
T . Denote the eigenvalue corresponding to the invariant hy-
perplaneπ asλ, then the current statement is equivalent to: for
any pointX we have:

∃ µ ∈ R : T · (x) = λ · (x) + µ · (s) (23)

Further proof will be omitted here.
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Theorem 2 (Existence & Uniqueness of stereohomology ma-
trix). A stereohomology matrix can be uniquely determined by
an extended Desarguesian configuration: the unique general-
ized projective transformation matrix which transforms X1, X2,· · ·
Xn, Xn+1 and S in extended Desarguesian configurationEq. (2)
in Definition 1 into Y1, Y2,· · ·Yn, Yn+1 and S( or Null ) respec-
tively.

Proof. First, a generalized projective transformation coefficient
matrix determined by an Extended Desarguesian Configuration
is a stereohomology, which can be proved from Lemmas.

The uniqueness of the generlized projective transformation
therefore is equivalent to the uniqueness which has been proved
in Lemma2

Property1. The order of the minimal characteristic polynomial
of a stereohomology matrix always is 2.

Property 2. If an (n+1)- dimensional stereohomology matrix
has two different eigenvalues, one of which should be the pri-
mary eigenvalueλ, and have geometric multiplicity ofn, the
other eigenvalue can be denoted byρ; whenλ=ρ, the stereoho-
mology matrix can not be diagonalized.

Definition 10 (primary eigenvalue). It has been proved that an
(n+1) dimensional stereohomology transformation matrixT

has at least one eigenvalue, denoted asλ, with geometric multi-
plicity of n. This eigenvalueλ is called the primary eigenvalue
of stereohomologyT .

3. Matix representation of stereohomology

Definition 11 (Elemetary Matrix). An elementary matrix is a
matrix which can be represented as [3]:

E(u, v;σ)
de f
== I − σ · u · v⊤

u, v ∈ Rn, 0 , σ ∈ R (24)

As has been mentioned that the stereohomology matrix ob-
tained from Extended Desarguesian configuration, with the for-
m in Eq. (6) is too complicated for application. And most com-
monly, we don’t use the coordinate information from the Ex-
tended Desarguesian configuration for stereohomology related
transformation determination. e.g., for those transformations
which are intended to be included by stereohomology, it should
be sufficient to determine a central projection, by coordinate
information of a projection center and a projection plane, or to
determine a parallel projection by projection direction and pro-
jection plane; and so forth.

These considerations finally lead to a rather simple rep-
resentation for stereohomolgy: elementary matrix in numer-
ic analysis, which begins with symbolically constructing the
transformation matrix of a specific 3D stereohomology.

For a 3- dimensionalelementary homologyT 3d with stere-
ohomology centerS: (s1, s2, s3, s4)⊤, and stereohomology hy-
perplaneπ: (a, b, c, d)⊤, suppose neither two ofa, b, c, andd
are zero at the same time, and the two eigenvalues ofT 3d are
λ, corresponding toπ with a geometric mutiplicity of 3, andρ,
corresponding toS.

Therefore, (s1, s2, s3, s4)⊤ is an associated eigenvector ofρ,
and the linearly independent (−b, a, 0, 0)⊤, (−c, 0, a, 0)⊤, (−d, 0, 0, a)⊤

are the associated eigenvectors ofλ, i.e.:





T 3d · (s1, s2, s3, s4)⊤ = ρ · (s1, s2, s3, s4)⊤

T 3d · (−b, a, 0, 0)⊤ = λ · (−b, a, 0, 0)⊤

T 3d · (−c, 0, a, 0)⊤ = λ · (−c, 0, a, 0)⊤

T 3d · (−d, 0, 0, a)⊤ = λ · (−d, 0, 0, a)⊤

(25)

Eq.(25) can be rewritten as:

T
3d
=




−λb −λc −λd ρs1

λa 0 0 ρs2

0 λa 0 ρs3

0 0 λa ρs4



×




−b −c −d s1

a 0 0 s2

0 a 0 s3

0 0 a s4




−1

==
1

as1+bs2+cs3+ds4
×




ρas1+λbs2+λcs3 + λds4 bs1(ρ − λ) cs1(ρ − λ) ds1(ρ − λ)

as2(ρ − λ) λas1+ρbs2+λcs3+λds4 cs2(ρ − λ) ds2(ρ − λ)

as3(ρ − λ) bs3(ρ − λ) λas1+λbs2+ρcs3+λds4 ds3(ρ − λ)

as4(ρ − λ) bs4(ρ − λ) cs4(ρ − λ) λas1+λbs2+λcs3+ρds4




(26)

Then Eq. (26) can be rewritten and extended ton- dimen-
sional projective space as:

T ( (s), (π); λ, ρ)
def
=== λ · I + (ρ − λ) ·

(s) · (π)⊤

(s)⊤ · (π)

(s), (π) ∈ Rn+1, (s)⊤ · (π) , 0, ρ ∈ R (27)

Forelementary perspectivetransformation, similarly we can
obtain (using any fixed point (x) < π as auxiliary point/vector,
and its corresponding point homogeneous vector per Eq. (23)in
Lemma5):
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T ( (s), (π); (x), λ, µ′)
def
=== λ · I + µ′ · (s) · (π)⊤

(x)⊤· (π)

(s), (π), (x) ∈ Rn+1, (s)⊤·(π) = 0,

(x)⊤· (π) , 0, µ′ , 0, (x)satisfies Eq. (23) (28)

Eq. (28) can also be rewritten as:

T ((s), (π); λ, µ)
de f
==λ · I + µ · (s) · π⊤√

(s)⊤·(s)·(π)⊤·(π)

(s), (π) ∈ Rn+1, (s)⊤·(π)= 0, 0 , µ ∈ R (29)

In Eq. (29), the
√

(s)⊤ ·(s)·(π)⊤·(π) in the denominator is
added only in order that the parameterµ′ can be independent
to the homogeneous coordinates selection for (s) and (π).

The transformation matrices constructed have generality for
any other elementary homology or elementary perspective re-
spectively.

Lemma6 (Sylvester theorem). If a matrix A ∈ Fm×n, B ∈ Fn×m,
and the characteristic polynomials ofAB and BA are fAB(λ)
and fBA(λ) respectively, then:

fAB(λ) = λm−n · fBA(λ) (30)

Property3 (rank of stereohomology). The rank of (n+1)- di-
mensional stereohomology matrix should be greater than or e-
qual ton.

Proof. Let A = α · (s), B = (π)⊤ (∀ α ∈ R). Applying Eq. (30)
in Lemma6 to the characteristic polynomials ofAB and BA,
we have the following results:

WhenS < π, using Eq. (27) to representT . let

α = − ρ − λ
(s)⊤·(π)

then we have the determinant of stereohomology transforma-
tion matrix:

det(T ) = det

(
λ · I + (ρ − λ)

(s)· (π)⊤

(s)⊤·(π)

)

= fAB(λ) = λn · fBA(λ) = λn · ρ (31)

Sinceλ , 0 is the eigenvalue with the geometric multiplicity
of n, if and only if ρ = 0, we have rank(T ) = n; otherwise
rank(T ) = n+1.

WhenS ∈ π, let

α =
−µ√

(s)⊤·(s) · (π)⊤(π)
the determinant ofT :

det(T ) = det

(
λ · I + µ ·

(s)⊤· (π)√
(s)⊤·(s) · (π)⊤(π)

)

= fAB(λ) = λn · fBA(λ) = λn+1 (32)

Sinceλ is the only nonzero eigenvalue ofT , so for an elemen-
tary perspective transformation,T always is nonsingular. Here
rank(T ) = n+1.

Theorem 3(elementary matrix representation). A stereohomol-
ogy geometric transformation, which is defined inDefinition7,
can and only can be represented as elementary matrix, which is
defined byEq. (24)in Definition11; and an elementary matrix
always have the geometric meaning of stereohomology.

Theorem 4 (tri-stereohomology theorem). If T1 and T2 are
two different stereohomology transformation with stereohomol-
ogy centers of S1, S2 respectively, and stereohomology hyper-
planes ofπ1 andπ2 respectively.T3 = T1 · T2. Then:

(i) If S1 coincides with S2, thenT3 is also a stereohomology;
Denote the stereohomology hyperplane ofT3 asπ3, then
π1, π2 andπ3 are collinear.

(ii) If π1 coincides withπ2, thenT3 is also a stereohomology;
Denote the stereohomology center ofT3 as S3, then S1,
S2 and S3 are collinear.

Proof. Using Theorem 3, Eq. (27) and (29), and Definition 7,
the current statement is straightforward.

Unless otherwise specified, the primary eigenvalue of stere-
ohomologyλ, will be set as a default nonzero value of 1.

4. Applications of elementary matrices in computer graph-
ics

The elementary matrix representation of stereohomology
actually can be used for a series of geometric transformation-
s which have been commonly used in computer graphics.

4.1. Represent geometric transformations by elementary matri-
ces

Since some of the geometric transformations like projec-
tions, are actually singular transformations, while a projective
transformation in projective geometry is nonsingular, in order
to represent such kind of transformations, the concept of stere-
ohomology is defined to be able to include both singular and
nonsingular transformations.

Property4 (singular stereohomology). The transformation ma-
trix T of a singular stereohomology can and only can be rep-
resented as:

T ((s), (π))
de f
=== I − (s) · (π)⊤

(s)⊤· (π)
(33)

where (s),(π) ∈ R, (s)⊤· (π) , 0.

Definition 12 (reflexive; involutory). If a projective geometric
transformationT satisfies:

T
2
= k · I, ∃ 0 , k ∈ R

then T is involutory, or is called an involutory (projective)
transformation.

Property5 (involutory stereohomology). An involutory stereo-
homologyT can and only can be represented as:

T ((s), (π))
de f
=== I − 2× (s) · (π)⊤

(s)⊤ · (π)
(34)
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Definition 13 (Central projection). A central projectionT is
a singular stereohomology, of which both the stereohomology
centerS and the stereohomology hyperplaneπ are at finity.

And the stereohomology centerS is called theprojection
centerof Central projectionT , andπ is called theprojection
hyperplaneor image hyperplaneof T .

Definition 14. (normal direction for finite hyperplane) For a
point at infinity P∞ and a hyperplane at finityπ, if the inner
product of the homogeneous coordinate vector ofP∞ and that
of any infinite point in hyperplaneπ, is equal to zero, then we
sayP∞ is the normal direction ofπ, or P∞ is (projectively) or-
thogonal toπ, denoted asP∞⊥π.

Specifically, in 3- dimensional projective space, if we use
(x1, x2, x3, 0)⊤ (wherex2

1+ x2
2+ x2

3 , 0) to represent the homo-
geneous coordinate vector of a point at infinity (unless oth-

erwise specified, all the examples discussed in 3-

dimensional projective space in the present work

will take this as a premise), and if the homogeneous co-
ordinate vector of a finite hyperplaneπ is (a, b, c, d )⊤, then
the normal direction ofπ can be represented ask · (a, b, c, 0 )⊤

(where 0, k ∈ R).

Definition 15 (Projectively parallel). If there exists one inter-
section point at infinity of linel1 and another linel2, or hyper-
planeπ, then we say linel1 is projectively parallel, or simply,
parallel, to linel2, or hyperplaneπ, denoted asl1‖l2, or l1‖π.

If there exists one intersection line at infinity of two hy-
perplanesπ1 andπ2, then we say hyperplaneπ1 is projectively
parallel, or simply, parallel toπ2, denoted asπ1‖π2.

The following conclusion will be straightforward:

Property 6 (normal direction property). If two finite hyper-
planesπ1 ‖ π2, thenπ1 andπ2 have the same normal direction.

Definition 16 (Parallel projection). A parallel projecitonT is a
singular stereohomology, of which the stereohomology center
S is at infinity, while the stereohomology hyperplaneπ is at
finity.

The stereohomology centerS is called the projection direc-
tion of parallel projectionT , and the stereohomology hyper-
planeπ is called the projection hyperplane, or the image hyper-
plane of the parallel projectionT .

Specially, ifS⊥π, the parallel projectionT is called an or-
thogonal parallel projection.

An orthogonal parallel projection can be uniquely deter-
mined by its projection hyperplane.

Definition 17 (Reflection). A general reflectionT is an invo-
lutory stereohomology, of which, the stereohomology center S
is at infinity, and the stereohomology hyperplaneπ is at finity.π
is called the reflection hyperplane; andS is called the reflection
direction.

Specially, whenS⊥π, the general reflectionT is called an
orthogonal reflection, or simply called areflection.

Definition 18 (Centrosymmetry). A centrosymmetry transfor-
mationT is an involutory stereohomology, of which the stere-
ohomology centerS is at finity, while the stereohomolgy hy-
perplaneπ is at infinity.

S is called the symmetric center ofT .

Definition 19 (translation transformation). A translation trans-
formation is an elementary perspective, of which both the stere-
ohomology centerS and the stereohomology hyperplaneπ are
at infinity.

But Definition 19 is not the best definition for a translation
transformation especially when determining the transformation
matrix. It better be defined as:

Definition 20 (translation transformaiton). If two reflectionT1

andT2, have parallel reflection hyperplanesπ1 ‖ π2, then the
compound transformation of two reflectionT1 andT2: T =

T1 · T2, is a translation transformation.

In Euclidean space, the translation distance ofT is just
twice that betweenπ1 andπ2. Or it can be defined as:

Definition 21 (translation transformation). The compound trans-
formation of two centrocymmetric transformationT1 andT2:
T = T1 · T2, is a translation transformation.

In Euclidean space, the translation distance ofT is twice
that between the two symmetric centersS1 andS2; and trans-
lation direction can be determined according to the direction of

oriented line
−−−−→
S1S2.

Definition 22 (rotation transformation). SupposeT1 and T2

are tworeflectiontransformations, and the intersection line of
the two reflection hyperplanes is:l = π1 ∩ πs. The the com-
pound transformationT = T1 · T2, is called a rotation trans-
formation.l is the rotational axis ofT .

In Euclidean space, the rotation angle degree is twice that
of the dihedral angle betweenπ1 andπ2.

4.2. Represent 3D reconstructing objects from multiple projec-
tions

4.2.1. A brief introduction
In Vision[4], Marr presented a very general discussion of

representation and process for 3D reconstruction, and described
three levels of information processing: theory, representation /
algorithm, implementation.

In the present work, though the 3- dimensional reconstruc-
tion may mean the same thing: to reconstruct objectives from
their images or projections, the basic concepts are still different
from the conventional ones.

First, let us consider an axiom, or a speculation in the cur-
rent representation, which is useful in 3D reconstruction but
may be easily neglected by the conventional representation.

Speculation 1(Feasibility of 3D reconstruction). A 3- dimen-
sional reconstruction is feasible, if and only if, there exists a
one-to-one mapping between objectives and their image conse-
quence(s).
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Speculation 1 is true no matter what kind of 3D reconstruc-
tion one considers, i.e., either from multiple projectionsor from
only single view, either by geometric optical principles orany
other, with any additional constraints like symmetry and soforth
or not.

From this point of view, the constraints in 3D reconstruction
better be divided into two types, though it is still a little hard to
present rigorous definitions for them:

Type I Geometric constraints, which are general for all kind
of 3D reconstruction problems; e.g., the epipolar geome-
try constraints in 3D reconstruction; the Desargues theo-
rem; and so forth;

Type II Transcendental constraints, which are special and on-
ly feasible for some specific cases; e.g., the symmetry of
specific objectives, light and shadow, or color, and so on,
of objectives.

4.2.2. Some basic definitions for the current representation
Definition 23 (normalized homogeneous coordinate). Such ho-
mogeneous coordinate vector as (x1, x2, x3, 1)⊤, which repre-
sents a point, is called normalized homogeneous coordinate, s-
ince which can be simply and directly mapping to (x1,x2, x3)⊤

in Euclidean space.
For the homogeneous coordinate vector of an arbitrary point

X′: (x′1, x′2, x′3, x′4)⊤ (wherex′4 , 0, so thatX′ can be mapped
into Euclidean space), the normalized homogeneous coordinate
can be obtained by dividingx′4 for everyx′i (i =1,· · · ,4).

The normalized homogeneous coordinate vector of (x) is
denoted as (x)


Definition 24 (normalization operation). A normalization op-
eration is a mapping which can map homogeneous coordinate
vector, or homogeneous coordinate vector block matrix, into
its normalized form. A normalized operation is denoted as:
(x)
 == S [(x)] X


== S [X]

Definition 25 (matrix dot multiplication). If m×n dimensional
matricesA = (ai, j)m×n, B = (bi, j)m×n, then the dot multiplica-
tion product ofA andB is defined as:

A ⊙ B
de f
===
(
ai, j · bi, j

)
m×n (35)

Definition 26 (camera matrix). In the current work, a central
projection or parallel projection will be considered as a camera;
and the transformation matrix thereof is called a camera matrix,
denoted byC .

According to definition, a camera matrix can be represented
by Eq. (33).

According to Definition 26, a camera matrix represented by
Eq. (33) for central projection camera matrices and parallel pro-
jection, is only a linear camera model. In the present work, the
nonlinear distortion will not be considered for cameras.

Lemma7 (Null Vector for Singular Stereohomology). For sin-
gular stereohomology defined by Eq. (33), and any non-null ho-
mogeneous coordinate column vector (x), if and only if ∃ 0 ,
k ∈ R, (x) = k · (s): T · (x) = 0

Definition 27 (Camera group matrix). Suppose in 3- dimen-
sional projective space, there arem (m > 2) different views of
an objective projected by the followingmdifferent camera ma-
trices in Eq. (36). Then Eq. (37) defines the camera group ma-
trix, which is actually a block matrix (also can be calledmulti-
projection matrix) which can be partitioned into themdifferent
camera matrices( also calledsub-multi-projection matrices).

C 1 ((s)1, (π)1)
de f
=== I − (s)1(π)⊤1

(s)⊤1(π)1

C 2 ((s)2, (π)2)
de f
=== I − (s)2(π)⊤2

(s)⊤2(π)2

.

.

.

C m ((s)m, (π)m)
de f
=== I − (s)m(π)⊤m

(s)⊤m(π)m





(36)

P
de f
===




[
I −

(s)1 · (π)⊤1
(s)⊤1 · (π)1

]

[
I − (s)2 · (π)⊤2

(s)⊤2 · (π)2

]

.

.

.

[
I − (s)m · (π)⊤m

(s)⊤m · (π)m

]




4m×4

(37)

Definition 28 (Camera Calibration). In this work, the calibra-
tion of a camera means, the process of finding the homogeneous
coordinate vectors of stereohomology center and the stereoho-
mology hyperplane of a camera matrix.

Similarly, the calibration of a camera group matrix(e.g., de-
fined by Eq. (37) in Definition 27), should be the process of
finding all the homogeneous coordinate information of all them
pair of stereohomology centers and sterehomology hyperplanes
for themdifferent camera matrices.

Definition 29 (objective matrix). An objective matrix is a ma-
trix, each column of which is a homogeneous coordinate col-
umn vector of a point, denoted byΞ. Generally, an objective
matrix representingn different points is a 4× n dimensional
matrix. If all the homogeneous coordinate vectors in an objec-
tive matrix are normalized homogeneous coordinates, then the
objective matrix is called a normalized objective matrix, denot-
ed byΞ
.

According to definition,Ξ
 == S [ Ξ ]. and there exists a
diagonal matrixΛ, which is called arelaxationmatrix, and has
the dimension ofn×n to the image matrixΞ, and which makes:

Ξ == Ξ

 · Λ == S [ Ξ ] · Λ (38)

Definition 30 (Subimage matrix). An objective matrixΞ orΞ


transformed by a sub-multi-projection matrix or camera matrix
C will lead to a subimage matrix, denoted asψ. If all the image
point coordinates inψ have been normalized, denoted asψ


=

S [ψ]. Then:

ψ
de f
== C · Ξ ψ

de f
== C · Ξ (39)

ψ
 · Λ de f
== C · Ξ ψ
 · Λ de f

== C · Ξ
 (40)
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TheΛ matrix is ann × n diagonal matrix. A subimage matrix
has the same dimension to the corresponding 4× n objective
matrix.

Definition 31 (image matrix). An image matrixΨ is a block
matrix which consists ofm different subimage matricesψi (i =
1, · · · ,m), which can be obtained from transforming the 4× n
objective matrixΞ or Ξ
 by the 4m× 4 camera group matrix/
multi-projection matrixP. If all the m subimage matricesψi

are normalized, then the image matrix is called a normalized
image matrix, denoted asΨ
.

An image matrix can be defined by:

Ψ
def
===




ψ1

ψ2
...

ψm


=




C1·Ξ
C2·Ξ
...

Cm·Ξ


=




C1

C2
...

Cm


· Ξ =P · Ξ (41)

According to definition,Ψ

== S [ Ψ ], and there exists a

projective depthmatrixΓ, which has the same dimension to the
image matrixΨ and satisfies:

Ψ == Γ ⊙Ψ

== Γ ⊙S [ Ψ ] (42)

Definition 32 (projective depth and projective depth matrix).
Since the projection of a pointX into Y through camera matrix
C can be represented by:

γ · (y)
 = C · (x)
 (43)

andn different pointsX1, X2, · · · , Xn into Y1, Y2, · · · , Yn through
C can be represented by:

C ·
[

(x)
1 (x)
2 · · · (x)
n
]

=
[
γ1· (y)
1 γ2· (y)
2 · · · γn · (y)
n

]

=
[

(y)
1 (y)
2 · · · (y)
n
]
·




γ1 0 ··· 0

0 γ2 0
...

... 0
... 0

0 ··· 0 γn




=




γ1 γ2 · · · γn

γ1 γ2 · · · γn

γ1 γ2 · · · γn

γ1 γ2 · · · γn


 ⊙

[
(y)
1 (y)
2 · · · (y)
n

]

(44)

For each cameraCi , denote the matrix dot multiplication
matrix in Eq. (44) asΓi , and that for the multiple camera pro-
jection, asΓ, then we have the following equation:

Γ ⊙Ψ

=




Γ1

Γ2
...

Γm


 ⊙




ψ


1
ψ


2
...

ψ


m


 =




C1

C2
...

Cm


 · Ξ


 (45)

In the aforementioned equations Eq. (42), (43), (44) and
(45),γi is calledprojective depth, and the corresponding matri-
cesΓ andΓi are theprojective depth matricesfor multi-projection
matrix and for camera matrices respectively.

Theorem 5 (Projective depth theorem). For a camera matrix
C , which has the image hyperplaneπ, and the projection through
which can be represented by Eq.(43) and (44), if all the points
(x)
i are on the same hyperplaneα, which satisfiesα||π, then
all the projective depthγi in Eq.(44) should be a constant.

Proof. Theorem 5 can be proved by analyzing the fourth entity
of each obtained image homogeneous coordinate vector (y)i in
Eq. (44) since (y)i = γi · (y)
i , andγi is actually the fourth entity
of (y)i according to Definitions 23 and 24.

Theorem 5 can be applied in the simplification for projec-
tive depth matrix and its matrix dot multiplication operation in
reconstruction.

Theorem 6 (Coordinate transformation of camera matrix). If
there exists a coordinate transformationL , which transforms
camera matrixC1 into C2. ThenC2 = L · C1 ·

(
(L )⊤

)−1
.

4.2.3. Statements of projection and reconstruction problems
Definition 33 (Statement of projection). Therefore the projec-
tions of anyn different points bymdifferent cameras defined in
Eq. (36) can thus be represented by:

Ψ4m×n ==P4m×4 · Ξ


4×n (46)

Here sinceΨ4m×n can also be represented by Eq. (42), then we
have:

Γ4m×n ⊙Ψ


4m×n ==P4m×4 · Ξ


4×n (47)

whereΞ


4×n represents the normalized objective matrix, of which
each column is corresponding to a normalized homogeneous
coordinate vector of an objective point, andΨ4m×n represents
the image matrix, which consists of the homogeneous coordi-
nates of theM different projections.

Lemma8 (Reconstruction Lemma). For the projection model
in Eq. (46) and Eq. (47), the statement ofreconstruction is fea-
sible for bothEq. (46)andEq. (47), is equivalent to that,P is
a column full-rank matrix, i.e., rank(P)=4.

Proof. Actually, according to Speculation 1, Eq. (46) and E-
q. (47) already define a mapping from objective to the corre-
sponding image sequences. So the problem is equivalent to
that, whether there exists an inverse mapping for Eq. (46) or
Eq. (47).

According to matrix analysis theory, if and only if rank(P)=
=4,P has left inverse matrices, denoted asP+. Eq. (46) or E-
q. (47) premultiplyingP+ will obtain the objective matrix from
the image matrix, i.e., there exists an inverse mapping fromim-
age matrix into the objective matrix.

Here we don’t need to consider theΓ matrix for Eq. (47).

Definition 34 (Statement of reconstruction). Simply, the recon-
struction equation ofn points can be obtained from their projec-
tion equation Eq. (47), denote the left inverse matrix of camera
group matrixP asP†, we have:

Ξ


== P

† ·
(
Γ ⊙Ψ


)
(48)
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Theorem 7 (Feasibility of reconstruction). For the projection
and reconstruction model in the present work, from Specula-
tion 1 we can obtain the following corollaries: The reconstruc-
tion is feasible if and only if:

(i) when all the camera matrices in a camera group matrix are
central projections, and there exists at least two projec-
tion centers which do not coincide with each other;

(ii) when all the camera matrices in a camera group matrix are
parallel projections, and there exists at least two projec-
tion directions, which do not coincide with each other;

(iii) when there are both central projection and parallel pro-
jection camera matrices in a camera group matrix.

Proof. To prove this statement, we only need to consider the
case when the camera group matrixP has two different camer-
a matrices as sub-projection matrices. Suppose they areC1 and
C2 with stereohomology centers of (s)1, (s)2 and image hyper-
planes of (π)1, and (π)2 respectively. Postmultiply an arbitrary
non-zero homogeneous coordinate vector (x) to P, the current
statement is equivalent to that,∀(x): P ·(x), 0. Since

P · (x) =

[
C1

C2

]
· (x) =

[
C1 · (x)
C2 · (x)

]
(49)

Use Lemma 7 to the partitioned block matrixC1 ·(x) andC2 ·(x)
in Eq. (49), the statement will be straightforward.

Theorem 7 is applicable for all of the multiple projection re-
construction problems using central/parallel projectioncamera
models with onlyType I constraints.

By definition, both Eq. (46) and Eq. (47) represents com-
patible equations, therefore whenP is column full-rank, the
objective matrix obtained by premultiplyingP+ to these equa-
tions, is a least norm solution, and theP+ is a least norm pseu-
do inverse matrix forP. Due to perturbations, they usually are
contradictory equations; then linear least square approximation
approach is used,and the left-inverse now denoted asP† in E-
q. (48) is the Moore-Penrose pseudo-inverse of theP.

DifferentP+s mean different approximation approaches to
the solution.

Usually when we begin to reconstruct an objective from its
projections, theΓ matrix here may not be exactly equal to that
in Eq. (47). What we really need is the objective matrixΞ, and
the normalizedΞ
 can be obtained by applying normalization
operation toΞ. Then the reconstruction equation can be rewrit-
ten as:

Ξ == P
† ·
(
Γ
′ ⊙Ψ


)
(50)

or : Ξ̂ == P̂† ·
(
Γ̂ ⊙ Ψ̂


)
(51)

then : Ξ̂
 == S [Ξ̂]

In Eq. (51), symbols likêΞ, Ψ̂
, P̂†, Γ̂, with a “wide hat”
are used to represent the correspondingΞ,Ψ
, P†, Γ with per-
turbation respectively, which may be from measurement, float-
ing point roundoff, any kind of distortions, and so on.

4.2.4. Special camera models for reconstruction simplification
In some application circumstances, there are some camera

group models, in which we can have the reconstruction work
simplified.

Definition 35 (Simplified Camera group modelType I). The
type I simplified camera group matrixP, consists of camera
matricesCi (i = 1, · · · ,m), which have the common stereoho-
mololgy hyperplaneπ, and the linesl j ( j = 1, · · · ,C2

m) across
any two of the stereohomology centers of which, should be par-
allel to the common stereohomology hyperplaneπ.

Property7 (idealized central projection model reconstruction).
In a reconstruction problem, if all the different views are ob-
tained from theType I simplified camera group model, then
the calculation of projective depth matrixΓ can be omitted.

Proof. The statement can be proved by using Theorem 5.

Definition 36 (Simplified Camera group modelType II ). The
Type II simplified camera group matrixP, consists of camera
matricesCi (i = 1, · · · ,m), which are all parallel projection
matrices.

Property 8. In a reconstruction problem, if all the different
views are obtained from theType II simplified camera group
model, then the calculation of projective depth matrixΓ can be
omitted.

Proof. The statement can be proved by using Theorem 5.

Definition 37 (Simplified Camera group modelType III ). The
Type III simplified camera group matrixP, consists of camera
matricesCi (i = 1, · · · ,m), which are all orthogonal parallel
projection matrices.

Property 9 (orthogonal parallel projection model reconstruc-
tion). In the 3D reconstruction problems based on a Type II
camera group matrix model, first, the calculation of the projec-
tive depth matrixΓ can be omitted; second, the camera calibra-
tion can be greatly simplified.

The parallel projection model can be directly applied to
CAD circumstances, in which cameras are orthogonal parallel
projection, the relative positions of cameras are simple, and the
Γ matrix is not necessary for reconstruction.

Conclusion

(1) The concept ofstereohomologyhas been proposed refer-
ence coordinate system independently, which includes a
series of commonly used geometric transformations of
which the transformation matrices are elementary matri-
ces.

(2) The elementary matrix representation of stereohomology
can be employed to represent the processes of projection
and reconstruction in computer vision. A novel linear
representation mathematical model has been presented.

(3) The current representation for 3D reconstruction actually
provides a possible axiomatic approach to reconstruction
problems with onlyTYPE I constraints.
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