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Abstract

By using an extension of Desargues theorem, and the exté&atguesian configuration thereof, the analytical defmior
the stereohomology geometric transformation in projectigometry is proposed in this work. A series of such commuosgd
geometric transformations in computer graphics as cemtogction, parallel projection, centrosymmetry, refleectnd translation
transformation, which can be included in stereohomologytlaus analytically defined from this point of view. It hagheroved
that, the transformation matrices of stereohomology atteadly equivalent to the existing concept in numerical geist elementary
matrices. Based on the meaning of elementary matrices jagiive geometry thus obtained, a novel approach of 3D r&tcocting
objects from multiple views is proposed together with sorhthe concepts, principles and rules for its applicationsamputer
graphics.

Keywords:

Elementary matrix; Homogeneous coordinates; Desargeesdm; Perspective projection; 3D reconstruction; Ptvjec
geometry.

1. Introduction for example, central projection, and parallel projectiarg ac-
tually defined in Euclidean space by using the concepts of mea

As is well known that, such geometric transformations asstta  gyre or distance directly or implicitly which will be inapgéble

lation transformation, perspective projection in compgtaph- i, projective space.

ics, can be represented as square transformation matntes o second, conventionally, the geometric transformation ma-

through the homogeneous coordinate representation. trices can also be established for perspective projedtians-

Yet it is surprising to see that presently there is no rigor-jation transformation and so forth, based on homogeneous co
ous definition for the geometric transformations represgby  5rdinates representation in special reference coordayatem-
square matrices based on homogeneous coordinates. J@eallys \while mainly due to the limitations of the traditional rep
geometric transformation and its transformation mattigLgd resentations, there is actually no simple and straighticdw
be defined and identified reference coordinate system imdepereference-coordinate-system independent method fosfwan
dently, while the conventional representation method d®d t ation matrix establishing.
definitions in computer graphics, at least for geometriodra Since most of the geometric transformations can be repre-
formation matrices, are notin such a way. sented by square transformation matrices only through homo

Actually, the conventional definitions for the commonlydse geneous coordinates, an improved representation for geiome
geometric transformations and their transformation mes;i  ransformations better be based on homogeneous coorglinate
are not perfect, or even not theoretically rigorous in thle fo projective space.

lowing two aspects: . For geometric transformations which can be represented by
First, by using homogeneous coordinates, we assume thé&uare matrices, we have the following conclusion:
the geometric transformations are defined in projectiveespa
not in Euclidean space. As we know, in most of the curren-Theorem 0. The different transformation matrices in different
t computer graphics textbooks, the geometric transfoonati  reference coordinate systems of the same geometric transfo
mation are similar matrices.

*Corresponding author. Tel. - +xxxxxx/Fax. -+XXXXxXxx Proof. Suppose a geometric transformatigiin projective s-
Email addressanonynous (The Authors ) pace, which transforms an arbitrary point or hyperpl&rieto
'Corresponding author is anonymous. Y; and the homogeneous coordinatesxoand Y in reference
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coordinate systemd) and (I) are &), (X)’, (y), (y)’ respec-
tively; and the coordinate transformation matrix from tleé r
erence coordinate systert) (o (11) is a nonsingular matrix,
i.e., ¥ =T(X), (y) = T(y); Suppose the transformation matri-
ces of % in different reference coordinate systerhsgnd (1)
are A andB respectively, i.e.,.)) = A(X), (y) = B(X)’;. Then
we have:

W) =T =TAK = TAT (¥ @)
SinceX is arbitrary, therB = T AT~!, B andA are similar to
each other. O

2.2. Definition of stereohomology

Definition 2 (Generalized projective transformatiomfthe rank

of then+1 dimensional coefficient matrix; () of the following
transformation im dimensional projective space is equal to or
greater tham, then the transformation in projective space is
called a generalized projective transformation£ p € R):

PXq = t1aXy + toXo 4+ + tyneaXnet
PXo= 1o1X1 + tooXo + -+ + Tone1Xnst

(3)

PXeq =t 1 X F e 2Xo + - - Flnrrne1Xne1

TheorenD indicates that, in order to define a geometric

transformation reference coordinate system independew|
can take advantage of the inherent characteristics of th@ge
ric transformation matrix, i.e., properties of the tramaiation
matrix regarding eigen value(s), eigenvector(s), and #e g
metric meanings thereof.

Unless otherwise specified, the current work will be dis-
cussed only in the real fieldR, and a geometric transforma-
tions will be a point fiot hyperplangtransformation discussed
in onereference coordinate system. Therefa¥ecan be used
to represent both a transformation and the transformatian m
trix thereof. Symbols liked), (X),(X)i, (x) and so on, represent
the homogeneous coordinatelumnvectors for the poing, X,

Xi, and hyperplang and so on, respectively.

2. Stereohomology

2.1. Extension of Desargues theorem & Desarguesian configygrmed into Q--

ration

Theorem 1(Extended Desargues theoréﬂ{[]l,. 2P n- dimen-
sional projective spac < n € Z"), if the homogeneous coor-
dinate vectors of theth points X, Xo, ..., Xn, Xn+1, are linearly
independent, any n homogeneous coordinate vectors of the n
points Y, Yz, ..., Y, Yas1, are also linearly independent, and
there exists a fixed point S, the homogeneous coordinatervec
of which is linearly dependent to those of any two of the corre
sponding point pairs: Xand ¥, (i = 1,---,n+1). Then the
rank of the homogeneous coordinate vectors of thg @ter-

section points of line pairs;X; and YY;, which will here be
defined as §=S; XX, N YY; (i # },i.j = 1---n+1),

should be n.

Proof. See [ﬂl]. O

Similar to the Desargues theorem and its inverse, the iaverd

of Theorent 1L also is true.

Definition 1 (Extended Desarguesian configuratioif) 2n+

3 points, Xy, Xo, -+, Xny Xne1, S, Y1, Yo, <o+, Yn, Yne1, Mmeet
the constraints in both Theord 1 and its inverse, then the co
figuration that consists of all these points is an Extendeshbe
guesian configuration, denoted as

X X+ Xn Xne1-S-Y1 Y2 - Yn Yo (2)

Definition 3 (invariant point) In projective space, if the homo-
geneous coordinate vector of a point is an eigenvector oha ge
eralized projective transformatia#i, then the pointis called an
invariant point of.7 .

Definition 4 (General Invariant hyperplanepupposeX is any
point in hyperplaner, if its corresponding poinkK’ through a
generalized projective transformation matrik, is also inur,

thenr is a general invariant hyperplane 6f.

Definition 5 (Invariant hyperplane)SupposeX is any point in
the general invariant hyperplaneof .7, if X's corresponding
point X’ coincides withX, thensx is an invariant hyperplane of
7.

Definition 6 (null vector) If a generalized projective transfor-
mation .7 is singular, then there exists a point, denoteXas
of which the homogeneous coordinate vectgy, ill be trans-
-,0)7, to which there is no corresponding ge-
ometric point in projective space, such a column homogeseou
coordinateX) is called anull vector for.7.

Lemmal (existence of “stereohomology centerfh n- dimen-

sional projective space, if a generalized projective ti@msa-

tion .7 has an invariant hyperplamethen there exists a unique

{fixed point, which is collinear with any point and its imagergo

through.7; and when7 is nonsingular, the fixed pointis an in-
variant point of.7; when.7 is singular, the fixed point is the
null vector of 7.

Proof. Denote the generalized projective transformation matrix
as.7, and its invariant hyperplane as Suppose the homoge-
neous coordinate vector of any poitdenote its correspond-
ing point throughZ asY) can be linearly expressed by that of
an arbitrary invariant pointl € n(o,, - (h)=7(h), 0 # py e R is

he eigenvalue for all the points in) and that of a fixed point

C¢mras:
) =M +w-(c weR 4)
therefore,Y’'s homogeneous coordinate can be:
WM=7-®=pu-()+w-T-(C
pn€R, and welR (5)

From “Eq.[%)- Eq.[4)x p, ", we have:
W) —pu-(¥)=w-(F-(¢) —pu-(0)
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which indicates that there exist a unique fixed point, dethate
S below(theuniquenessan be proved througtroof by contra-
diction): A1 biAr, 1Az diAg

(=T -(c)=pu-(0),
azA]_ b2A2 C2A3 d2A4

which is collinear taX and the corresponding > (6)
Since any line througB is transformed into itself, the® is asA1 bsA, c3As diAg

an invariant point wher?” is nonsingular o6 is thenull vector

when.7 is singular (S ¢ n in this case). O | &A1 baAr  CaAz dsAg |

Definition 7 (Stereohomology)In n- dimensional projective The square transformation matrix of stereohomology should

space, a generalized projective transformation is callst@@-  pe obtained via more simple and direct method rather than tha
ohomology, if (1) the coefficient matrix thereof hastereoho-  in (Eq.(8)) from the coordinate information of an Extendest D
mology hyperplan¢denoted as ), the homogeneous coordi- sarguesian Configuration.

nate vector of any point on which is an eigenvector of thesran
formation matrix, and the rank of the vector set with all thes
eigenvectorsig; and (2) there exists a fixed point ( callsigre-

ohomology centerdenoted as$ ), of which the homogeneous with geometric multiplicity ofn, i.e., there exists an- dimen-

coordinate vector is linearly dependent to those of anytpoin . . : .
. . S : . . sional Eigenspace of the transformation matrix, and a hyper
then- dimensional projective space, and its correspondingtpoin

through the generalized projective transformation. plance of the transformatio

Lemma3 (Existence of am- dimensional Eigenspace)he
obtainedh+1 dimensional transformation matrix of generalized
projective transformationZ in Lemmal2, has an eigenvalue

Proof. Here only gives the proof when the transformation ma-
trix is nonsingular, i.e., not only all the homogeneous daor
nate vectorsx); are linearly independent, but all the vectok (
are linearly independent. And the symb@lhere will be used

Definition 8. (Elementary homology) An elementary homol- to represent both thgeometric transformatioand thetrans-

ogy geometric transformation is a stereohomology, of whicHformation matrix.

the Stereohomok)gy center is not on the Stereohomo|ogyrhype To prove the current statement, we need to construct and use
plane, i.e., the inner product of the homogeneous coomlinathe properties of the minimal polynomial of thel-dimensinal

vectors of the stereohomology center and the stereohomologransformation matrixs .
hyperplane, is not zero. First, since the homogeneous coordinate vect® cén be

linearly expressed as:
Definition 9. (Elementary perspective) An elementary perspec-

tive is a stereohomology, of which the stereohomology aente
is on the stereohomology hyperplane. (s

According toLemmdl], Definition[7 can actually be simpli-
fied as: a generalized projective transformation with a@rinv
ant hyperplane.

A1+ s

: . LX)+  BY):

Lemma2 (Existence & uniqueness theorenfor the Extended ) ) _ ) (7)
Desarguesian Configuration (Ed.(2) in Definitldn 1), there e : : : :
ists a unique generalized projective transformation, thghas
7, which transformsXy, Xo,- -+ X, Xh41 @andS into Y, Yo, - -
Yn, Yni1 @andS(or null) respectively.

= Anr1(ne1 + A1 (Wnea

and since all the+1 homogeneous coordinate vectors of either
Proof. Seel[l]. O (xior(y)i(i=1,--,n+1) are linearly independert, 0 # ;

The final form of the transformation matrif® in 3- dimen- < R(1=1;--,n+1), which make§) can be linearly expressed

sional projective space, which transforisB, C, D, into A, as:

B’, C’, D/, andS into S (or null) in the extended Desargue- n+l

sian configuration (Eql12) in Definitidd 1), respectivelyil\we (9= Z'“i (X)i (8)

obtained in the following forrrﬂl] (The;s andA{s are deter- i=1

minants defined il [1]): Since §); and §); are the corresponding points through the
- . geometric transformatiot (v i = 1,---,n+1), i.e., there

any DAy GAz dia exist a series of & p; € R (i=1,...,n+1), which satisfy:

a,A; LA, A, LA, .
v PO = T (=1 .+l )
BAL DhA, cphy A and ps(s) = 7(9 (10)
o combine all the above results in Hq.[7,[8[9] 10) together, we
[ &A1 Ay CAy diA; | will obtain the linear expression o) by (y); in two different




Elementary Matrix Representation of Some Commonly Used@ieiz Transformations 4

forms:
n+l : n+l i/l"
( - 1) CEDBL ) (12)
i=1 =1
and
1 n+1 n+1 it
(9="-7 > ()i = 2 (12)
S =1 i=1 s

Since the linear expression &) (by (y); should be unique
once the homogeneous coordinate vectors are selectedacomp

ing the corresponding factors before eagh, (ve can obtain:

p/i{}i = const. Fi=21--,n+l) (13)
Since accbrding to Eq[_(1.0)
1
(=—T-(9 (14)
S
and according to EQ.17)
(9) = ()i + (i)
pY
= 400+ L7 ()
Pi
27 e 72 (o) (1)
Ps PsPi
Yi=1---,n+1
Then from Eq[(Ib) we can obtain:
(7 - psl) (ﬂ * piji |> (X =0 (16)
i

Yi=1 ---,n+1
Sinceps is an eigenvalue of the transformation matex

and.7 # 1,
(t-p) (t+p'ﬂi,')

is the minimal characteristic polynomial of the transfotioia
matrix 7. Consequently,

17)

(18)

i
is also an eigenvalue of transformation matéix and then it
can be proved that the geometric multiplicity thereaf.is

which can be rewritten as,(j =1, - -, n+1):

(9)i.j = A(X)i = (X

= Aj(Y)j — A (i (20)
and
T (9)ij =T (¥ — 4j(X);)
= Aipi(Y)i — 4jpj(y); (21)

Comparing the linear expression &)(; in Eq. (20) and7 -

(9)i,j in Eq. (21) by §); and §);, considering Eq.[(I3), we thus
can obtain that:

7 (9= -2
i

Yi#j, i,j=21---,n+l (22)
Since the rank of the vector set which consists of all the homo
geneous coordinate vectors of g, intersection points is,
and all the vectors are associated eigenvectors, the ggomet
multiplicity of the associated eigenvaluens

When.7 is a singular matrix, the proof is similar with only

slight difference. O

The above statement bbmmd3 is actually corresponding
to the extended Desargues theorem: Thediem 1iantndd
below will be corresponding to the inverse thereof.

Lemmad (Existence of “stereohomology centerth n- dimen-
sional real projective space, if a generalized projectiapgfor-
mation transforms the poink§g, X,,- - - Xp,andXp,1 in extended
Desarguesian configuration ( Ed.(2) in Definitidn 1)

into Y1, Yz, - - Yn,andYy,1 respectively, and there exists an
eigenvalue with geometric multiplicity of for then+1 dimen-
sional transformation matri¥”. Then the homogeneous coor-
dinate vector ofS is an eigenvector o/, and the correspond-
ing eigenvalue equals zero in case thHais singular.

Proof. Proof is omitted here. O

Lemmab (“Stereohomology center "Linear correlationshippr
the generalized projective transformatiéf which transforms
1, X2,-++, Xn, Xnr1 @andS in extended Desarguesian configu-

Then prove that all the homogeneous coordinate vectors 9 tion (EqlR) in Definitiof1L )

theC2,, differentintersection points, denoted a§ (, (i # |, i,

j=1,---,n+1), are the associated eigenvectors of the eigenval

Eq. (18).

According to Eq.[(I7), which can be rewritten as:
(9) = A(X)i + A (Y)i

(912 =1 -(¥2 =2 - Y
(923 =(¥2 -(¥)3 =3 - )2

@i=1,---,n+1)
and

(D=0 —(s1= Mt — W) (19)

(1= —(ne1= Vez — (o)
(n11=Qne1—=(¥)1 =¥)1 = Wne1

into Y1, Y2, - -, Yn, Yne1 @ndS(or Null) respectively, for any

u|80intX, and its corresponding pointsthrough the transforma-

tion 7, the homogeneous coordinate vectogsand §) of the
two points are linearly dependent t§).(

Proof. Since there exists an invariant hyperplaraf the trans-
formation perLemmdd, according td.emmdl], there exists a
fixed invariant point §) which is the stereohomology center of
7. Denote the eigenvalue corresponding to the invariant hy-
perplaner as4, then the current statement is equivalent to: for
any pointX we have:

JueR : T-X)=2-(+u-(9 (23)
Further proof will be omitted here. O
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Theorem 2 (Existence & Uniqueness of stereohomology ma-  As has been mentioned that the stereohomology matrix ob-
trix). A stereohomology matrix can be uniquely determined byained from Extended Desarguesian configuration, withahe f
an extended Desarguesian configuration: the unique generaim in Eq. [8) is too complicated for application. And most com-
ized projective transformation matrix which transforms X,---  monly, we don’t use the coordinate information from the Ex-
Xn, Xns1@and S in extended Desarguesian configurakgn (2)  tended Desarguesian configuration for stereohomologtedtla

in Definitiond into Y, Yz, - - Yn, Yni1 and S(or Null ) respec-  transformation determination. e.g., for those transfdiona
tively. which are intended to be included by stereohomology, it Ehou

Proof. First, a generalized projective transformation coeffitien P€ sufficient to determine a central projection, by coortéina

matrix determined by an Extended Desarguesian Configaratighformation of a projection center and a projection plamepo

is a stereohomology, which can be proved from Lemmas. Fietgrmlne a parallel projection by projection directiod g@no-
The uniqueness of the generlized projective transformatiol®Ction plane; and so forth.

therefore is equivalent to the uniqueness which has beeregro 1 1ese considerations finally lead to a rather simple rep-
in Lemmad O resentation for stereohomolgy: elementary matrix in numer

ic analysis, which begins with symbolically constructirge t
Propertyl. The order of the minimal characteristic polynomial transformation matrix of a specific 3D stereohomology.
of a stereohomology matrix always is 2. For a 3- dimensionalementary homology™3® with stere-
Property 2. If an (n+1)- dimensional stereohomology matrix ohomology centeB: (s, S, S, )", and stereohomology hy-
has two different eigenvalues, one of which should be the priperplaner: (a,b,c,d)", suppose neither two &, b, ¢, andd
mary eigenvaluel, and have geometric multiplicity af, the ~ are zero at the same time, and the two eigenvalue® Yfare
other eigenvalue can be denoteddwheni=p, the stereoho- 4, corresponding tar with a geometric mutiplicity of 3, ang,

mology matrix can not be diagonalized. corresponding t&. _ _ _
Therefore, §;, S, S3, &4)" iS an associated eigenvectorof

and the linearly independentl, a,0,0)", (-c,0,a,0)", (-d,0,0,a)"
are the associated eigenvectorspife.:

Definition 10 (primary eigenvalue)lt has been proved that an
(n+1) dimensional stereohomology transformation matfix
has at least one eigenvalue, denoted,agith geometric multi-
plicity of n. This eigenvalud is called the primary eigenvalue TH (51,9, 5, %) =p - (S1, S, S, S4)"

of stereohomology” . 7% . ((b,a.0.0) = 1. (_b.a,0,0)

. . (25)
3. Matix representation of stereohomology 7% . (-¢,0,8,0) =1- (-c,0,a,0)
Definition 11 (Elemetary Matrix) An elementary matrix is a F3¥. (-d,0,0,a)" =1+ (-d,0,0,a)"
matrix which can be represented ais [3]:
def Eq.[25) can be rewritten as:
E(u,v;o)=I-0-u-v'
uveR", 0#£c0€eR (24)
-1
b -Ac -ad ps b —c -d 5
la 0 0 p a o0 0 = 1
5’3(1 — X = X
0 la 0 ps 0 a 0 x astbst+csrds,
0 0 J1a px 0 0 a
[pas +Abs+Acs + Ads, bs(o — 1) csi(o— A1) dsi(p— Q)

as(p - 1) 1as+pbs+ics+adsy cs(p — Q) ds(p—2)

as(p—-A) bs(p — 1) lag+Abs+pcs+ads, ds(o — ) (26)

asy(po— 1) bsi(po — 1) csi(p — ) lag+Abs,+Acs+pdsy,

Then Eq.[(2B) can be rewritten and extendea-talimen- Forelementary perspectivensformation, similarly we can
sional projective space as: obtain (using any fixed poinX}{ ¢ = as auxiliary point/vector,
and its corresponding point homogeneous vector pefEhir{23)

Lemmdd):

T (i dp) £ A1 +(p- 1) g (2)

(9, (1) eR™L, (97 - (1) 20, pe R 27)
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Theorem 3(elementary matrix representatio stereohomol-
ogy geometric transformation, which is definediefinition[Z,

T((9), (1); (), A, 1) R u - (O can and only can be represented as elementary matrix, which i
()7 () defined byEg. (23)in Definition[IT; and an elementary matrix
(9, (m), () € R™,(97(n) = 0, always have the geometric meaning of stereohomology.
(X)™ (7) £ 0, i’ # 0, (X)satisfies Eq23) (28)
Eq. (28) can also be rewritten as: Theorem 4 (tri-stereohomology theorem)f 73 and % are
two different stereohomology transformation with ste@obl-
7((9), (): /l,/l)déf/l- |+ p-(s)-n' ogy centers of § S, respectively, and stereohomology hyper-
VO™ (9 () (x) planes ofr; andn, respectively.7; = .71 - . Then:
(9, () e R™L, (9(1)=0, 0% u e R (29) (i) If S1 coincides with 9, then .73 is also a stereohomology;
In Eq. (29), the V(S7(9 ()" (%) in the denominator is Denote the stereohomology hyperplaneffass, then
added only in order that the parametércan be independent n1, 2 @nds are collinear.

to the homogeneous coordinates selection $pad ().

The transformation matrices constructed have generality f
any other elementary homology or elementary perspective re
spectively.

(i) If 71 coincides withr,, then 73 is also a stereohomology;
Denote the stereohomology center®@f as S, then S,
S, and & are collinear.

Proof. Using Theoreni3, Eq.{27) and {29), and Definifidn 7,

Lemmab (Sylvester theorem)lf a matrix A € F™", B € F™™, ; !
the current statement is straightforward. O

and the characteristic polynomials 88 and BA are fag(1)

and fga(4) respectively, then: Unless otherwise specified, the primary eigenvalue of stere
men ohomology4, will be set as a default nonzero value of 1.
fag(1) = A" - faa(4) (30)

Property3 (rank of stereohomology)The rank of (+1)- di- 4. Applications of elementary matrices in computer graph-
mensional stereohomology matrix should be greater thar ore ™ .

qual ton.
The elementary matrix representation of stereohomology

actually can be used for a series of geometric transformatio
s which have been commonly used in computer graphics.

Proof. Let A= a-(s), B= ()" (Y a € R). Applying Eq. [30)
in Lemmdg to the characteristic polynomials #fB and BA,
we have the following results:

WhensS ¢ x, using Eq.[2)7) to represet. let 4.1. Represent geometric transformations by elementatg-ma

p-1 ces
@= (9 (n) Since some of the geometric transformations like projec-
then we have the determinant of stereohomology transformdions, are actually singular transformations, while a ectye
tion matrix: transformation in projective geometry is nonsingular, idey
to represent such kind of transformations, the conceptenést
det(7) = det (4. I +(—21) (9 (”)T) ohomology is defined to be able to include both singular and
(9 (n) nonsingular transformations.
= fag(1) = 4" - fga(d) = 2" p (31)  Property4 (singular stereohomologyThe transformation ma-

Sinced # 0 is the eigenvalue with the geometric multiplicity trix .7 of a singular stereohomology can and only can be rep-
of n, if and only if o = 0, we have rank{)=n; otherwise resented as:

rank(7) = n+1. (s def, (9 ()] 33
Whens ¢ 7, let OEO=1"g @ 9
—u where §),(7) € R, (9)"- (7) # 0.
IR CRECHGIO) Definition 12 (reflexive; involutory) If a projective geometric
the determinant of/: transformation7 satisfies:
. 2 _
det(f):det(/l-l+y~ () () ) F2=k-1, 30#keR

V(9™ (9) - (m)(m) then .7 is involutory, or is called an involutory (projective)

= fag(d) = 2" - fga(2) = A™* (32) transformation.

Sinced is the _only nonzero e_lgenvalue gf SO for_ an elemen- Property5 (involutory stereohomology)An involutory stereo-
tary perspective transformatioff, always is nonsingular. Here homology.Z can and only can be represented as:
o :

rank(7) = n+1.
def (8- (m)°

T(9,(n)=1-2x TR0 (34)
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Definition 13 (Central projection) A central projection7 is  Definition 18 (Centrosymmetry) A centrosymmetry transfor-
a singular stereohomology, of which both the stereohomologmation.7 is an involutory stereohomology, of which the stere-

centerS and the stereohomology hyperplanare at finity. ohomology cente§ is at finity, while the stereohomolgy hy-
And the stereohomology cent&ris called theprojection  perplaner is at infinity.
centerof Central projection7, andr is called theprojection S is called the symmetric center of.

hyperplaneor image hyperplanef .7. _— . . .
yperp genyperp Definition 19 (translation transformation)A translation trans-

Definition 14. (normal direction for finite hyperplane) For a formation is an elementary perspective, of which both theest
point at infinity P, and a hyperplane at finity, if the inner ~ ohomology cente$ and the stereohomology hyperplanare
product of the homogeneous coordinate vectoPgfand that  at infinity.

of any infinite point in hyperplane, is equal to zero, then we
say P, is the normal direction of, or P, is (projectively) or-
thogonal tar, denoted a®., L.

But Definition[I9 is not the best definition for a translation
transformation especially when determining the transédiom
matrix. It better be defined as:

Specifically, in 3- dimensional projective space, if we use
(X1, X2, X3, O)" (WherexZ+ x3+ x5 # 0) to represent the homo-
geneous coordinate vector of a point at infinityess oth-
erwise specified, all the examples discussed in 3-
dimensional projective space in the present work
will take this as a premise), and if the homogeneous co- In Euclidean space, the translation distance%fis just

ordinate vector of a finite hyperplameis (a, b, ¢, d )7, then  twice that between; andr,. Or it can be defined as:

the normal direction of can be represented ks(a, b, ¢, 0)" o ) )
(where 0% k € R). Definition 21 (translation transformation)rhe compound trans-

formation of two centrocymmetric transformationl and 75:
Definition 15 (Projectively parallel) If there exists one inter- 7 = 73 - %, is a translation transformation.
section point at infinity of lind; and another lind,, or hyper- i . ) i
planer, then we say lind, is projectively parallel, or simply, In Euclidean space, the trqnslatlon distanceZofs twice
parallel, to linel,, or hyperplaner, denoted ai||l,, orly||r. tha_lt bet_wee_n the two symmetric cent&sa_nd S,; and trans-
If there exists one intersection line at infinity of two hy- lation direction can be determined according to the diogotif

Definition 20 (translation transformaiton)f two reflection.7;
and .7, have parallel reflection hyperplanes|| n2, then the
compound transformation of two reflectiol, and %5: 7 =
T - D, is a translation transformation.

. . P
perplanesr; andrn,, then we say hyperplang is projectively — oriented lineS;S,.

parallel, or simply, parallel ta,, denoted as||r>. Definition 22 (rotation transformation)SupposeZ; and %

The following conclusion will be straightforward: are tworeflectiontransformations, and the intersection line of
the two reflection hyperplanes i$:= n1 N . The the com-
pound transformatiot = 73 - %, is called a rotation trans-
formation.l is the rotational axis of7.

Property 6 (normal direction property)If two finite hyper-
planesr; || 72, thenmy andr, have the same normal direction.

Definition 16 (Parallel projection) A parallel projeciton” is a
singular stereohomology, of which the stereohomologyerent
S is at infinity, while the stereohomology hyperplamés at
finity.

In Euclidean space, the rotation angle degree is twice that
of the dihedral angle betweemn andrs.

. o . 4.2. Represent 3D reconstructing objects from multiplégmo
The stereohomology cent8ris called the projection direc- tionz govl Pigam

tion of parallel projection7, and the stereohomology hyper- L. i
planer is called the projection hyperplane, or the image hyper-4'2'1' A brief introduction

plane of the parallel projectiof. In \ﬁsior{@], Marr presented a very general discussion of
Specially, ifS_Lx, the parallel projectior? is called an or- representation and process for 3D reconstruction, anditedc
thogonal parallel projection. three levels of information processing: theory, represtsor /

algorithm, implementation.

An orthogonal parallel projection can be uniquely deter-  In the present work, though the 3- dimensional reconstruc-
mined by its projection hyperplane. tion may mean the same thing: to reconstruct objectives from
theirimages or projections, the basic concepts are dffidraint
from the conventional ones.

First, let us consider an axiom, or a speculation in the cur-
rent representation, which is useful in 3D reconstructiah b
may be easily neglected by the conventional representation

Definition 17 (Reflection) A general reflection” is an invo-
lutory stereohomology, of which, the stereohomology ceSte
is atinfinity, and the stereohomology hyperplaris at finity.
is called the reflection hyperplane; a8ds called the reflection

direction.
Specially, wherS_ Lz, the general reflectio¥ is called an  Speculation 1(Feasibility of 3D reconstruction)A 3- dimen-
orthogonal reflection, or simply calledreflection sional reconstruction is feasible, if and only if, therestgia

one-to-one mapping between objectives and their imageseons
quence(s).
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Speculatiofill is true no matter what kind of 3D reconstrucDefinition 27 (Camera group matrix) Suppose in 3- dimen-
tion one considers, i.e., either from multiple projectionffom  sional projective space, there arg(m > 2) different views of
only single view, either by geometric optical principlesamy  an objective projected by the following different camera ma-
other, with any additional constraints like symmetry antbsth  trices in Eq.[(3b). Then EJ.(B7) defines the camera group ma-
or not. trix, which is actually a block matrix (also can be calledilti-

From this point of view, the constraints in 3D reconstrugtio projection matrij which can be partitioned into tha different
better be divided into two types, though it is still a littlard to ~ camera matrices( also callsdb-multi-projection matricgs

present rigorous definitions for them: @1 (91, (7)) def (91(7)1
Type | Geometric constraintsvhich are general for all kind SHO
of 3D reconstruction problems; e.g., the epipolar geome- (92(n)5

try constraints in 3D reconstruction; the Desargues theo- C2((92 (1)2) =1 - (93(n)2

rem; and so forth; (36)
Type Il Transcendental constraint&hich are special and on-

ly feasible for some specific cases; e.g., the symmetry of Cm(Ym, (Mm) = def| _ (Im(®m

specific objectives, light and shadow, or color, and so on, (m(m)m

of objectives. . {I (91 - (”)1]
4.2.2. Some basic definitions for the current representatio (93 (M
Definition 23 (normalized homogeneous coordinat8uch ho- (92 (M3
mogeneous coordinate vector as, (X2, X3, 1)", which repre- P def {l (s) ) ] (37)
sents a point, is called normalized homogeneous coordisate 2 z
ince which can be simply and directly mapping 1a,&., X3)"
in Euclidean space. (S)m ()

For the homogeneous coordinate vector of an arbitrary point {I m}

X' (X, X5, X3, X3)" (Wherex; # 0, so thatX’ can be mapped CENCLIN 4mx4

into Euclidean space), the normalized homogeneous cardin Definition 28 (Camera Calibration)In this work, the calibra-

can be obtained by dividing, for everyx' (i =1, --,4). tion of a camera means, the process of finding the homogeneous
The normalized homogeneous coordinate vectondfi{  coordinate vectors of stereohomology center and the siereo
denoted asx)® mology hyperplane of a camera matrix.

Similarly, the calibration of a camera group matrix(e.@- d
ined by Eq.[(3F) in Definitioid7), should be the process of
ding all the homogeneous coordinate information of adlirth
pair of stereohomology centers and sterehomology hypeepla
for themdifferent camera matrices.

Definition 24 (normalization operation)A normalization op-
eration is a mapping which can map homogeneous coordmaﬁ:‘h
vector, or homogeneous coordinate vector block matrix int
its normalized form. A normalized operation is denoted as
(9 = 7] X* = 7] . . o .
Definition 29 (objective matrix) An objective matrix is a ma-
Definition 25 (matrix dot multiplication) If mxndimensional  trix, each column of which is a homogeneous coordinate col-
matricesA = (& j)mxn, B = (bij)mxn, then the dot multiplica-  ymn vector of a point, denoted 1§ Generally, an objective

tion product ofA andB is defined as: matrix representing different points is a 4< n dimensional
def matrix. If all the homogeneous coordinate vectors in an@bje
AoB= (aij b)), (35) tive matrix are normalized homogeneous coordinates, then t

Definition 26 (camera matrix) In the current work, a central ggjgst—l\ée matrixis called a normalized objective matriendt-

projection or parallel projection will be considered as mega;

. e e - .
and the transformation matrix thereof is called a cameraixpat . Accordmg_to defmmo_n,d J1E] . and th‘?re exists a
denoted by diagonal matrixA, which is called aelaxationmatrix, and has

According to definition, a camera matrix can be representeHh|e dimension ofix nto the image matriz, and which makes:

by Eq. [33). E=E°-A=.7[E]-A (38)

According to Definitio. 26, a camera matrix represented byPefinition 30 (Subimage matrix) An objective matrixz or =%
Eq. [33) for central projection camera matrices and pdaiee ~ transformed by a sub-multi-projection matrix or camerarirat
jection, is only a linear camera model. In the present warg, t ¢ Wwill lead to a subimage matrix, denotedyasif all the image
nonlinear distortion will not be considered for cameras. point coordinates i have been normalized, denoted/es =

Lemma7 (Null Vector for Singular Stereohomologylror sin- Z[y]. Then:

gular stereohomolpgy defined by Elg.](33), and any_non-null ho wdéfcg . v defey (39)
mogeneous coordinate column vectgy, (f and only if 1 0 # def def

keR, () =k-(9):.7-(x)=0 W A=%-E Yo -A=% -E° (40)
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The A matrix is ann x n diagonal matrix. A subimage matrix Theorem 5 (Projective depth theorem)or a camera matrix
has the same dimension to the correspondingridobjective ¢, which has the image hyperplangand the projection through
matrix. which can be represented by Ed3) and (@4), if all the points
(x);° are on the same hyperplame which satisfies||r, then

Definition 31 (image matrix) An image matrix¥ is a block all the projective deptly; in Eq. (@) should be a constant.

matrix which consists ofn different subimage matrices (i =

1,---,m), which can be obtained from transforming the 4 Proof. Theorenib can be proved by analyzing the fourth entity
objective matrixz2 or 2° by the 4nx 4 camera group matrix/ of each obtained image homogeneous coordinate vegtdn(
multi-projection matrix?. If all the m subimage matrices; Eq. (43) sincey)i = vi - (), andy; is actually the fourth entity

are normalized, then the image matrix is called a normalizedf (y); according to Definitions 23 aid 4. O
image matrix, denoted & o o )
An image matrix can be defined by: Theorenfih can be applied in the simplification for projec-
tive depth matrix and its matrix dot multiplication opeaatiin
U1 61-E ©1 reconstruction.
def | V2 2= 2 : . .
=|  |= =| " |.E=2.5 (41) Theorem 6 (Coordinate transformation of camera matrixj

: : : there exists a coordinate transformatidg#, which transforms
Ym Cm B Gm camera matrix¢; into . Thené, = % - 61 - ((X)T)_l.
According to definition¥® = .#[ ¥ ], and there exists a
projective depttmatrixI', which has the same dimension to the 4.2.3. Statements of projection and reconstruction prisle
image matrix¥ and satisfies: Definition 33 (Statement of projection)Therefore the projec-
N tions of anyn different points bym different cameras defined in
Y=To¥" =Tos[¥] (42)  Eq. [3B) can thus be represented by:

Definition 32 (projective depth and projective depth matrix)

Since the projection of a poiik into Y through camera matrix . Pama = Pamea - Egan (46)
% can be represented by: rere since¥4mn can also be represented by Hq.l(42), then we
ave:

Y-\ =7%-(x° (43) Laman © Wiinen = Pamca - Egin (47)
andn different pointsxy, Xz, - -, Xa into Y, Y2, -, Yo through - wherezg, represents the normalized objective matrix, of which
¢’ can be represented by: each column is corresponding to a normalized homogeneous

coordinate vector of an objective point, a#d., represents
C. [ ¥ (S - (02 ] the image matr_ix, which cpns_ists of the homogeneous coordi-
nates of theM different projections.
=[O 72207 - O]
y1 0 - 0 Lemma8 (Reconstruction Lemma)For the projection model
. in Eq. (46) and Eq[{47), the statementretonstruction is fea-
=[ W Wy W] 07920 : sible for bothEq. (48)andEq. (47), is equivalent to that? is
0.0 (44)  acolumn full-rank matrix, i.e., rarfk”)=4.
0 0 Proof. Actually, according to Speculatigh 1, Ef.146) and E-
Y172 n ) - o
g. (47) already define a mapping from objective to the corre-
A O [ T O3 - W5 ] sponding image sequences. So the problem is equivalent to
Yryz:ct I that, whether there exists an inverse mapping for [Eq. (46) or
Y1Y2 o Yn Eq. [47).

According to matrix analysis theory, if and only if rafik)=
=4, # has left inverse matrices, denoted@s. Eq. [46) or E-
g. (47) premultiplyingZ?* will obtain the objective matrix from
the image matrix, i.e., there exists an inverse mapping from
age matrix into the objective matrix.

Iy vy 2 Here we don't need to consider tiiematrix for Eq. [47).
Iz vs © =
roe¥e=1| . |o| . [=] . |-E® (45

For each camer&i, denote the matrix dot multiplication
matrix in Eq.[(44%) ad’, and that for the multiple camera pro-
jection, ad’", then we have the following equation:

: : : Definition 34 (Statement of reconstructianyimply, the recon-

| V/a4 Gm struction equation af points can be obtained from their projec-
In the aforementioned equations Ha.l(4Z2).]1(4B)J (44) andion equation EqL(47), denote the left inverse matrix of eean

(@5), i is calledprojective depthand the corresponding matri- group matrix%” as 2, we have:

cesl” andr; are theprojective depth matricéer multi-projection

matrix and for camera matrices respectively. E° = 2. (To¥®) (48)
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Theorem 7 (Feasibility of reconstruction)For the projection

and reconstruction model in the present work, from Specula-

tion[d we can obtain the following corollaries: The reconstr
tion is feasible if and only if:

10

4.2.4. Special camera models for reconstruction simplifica

In some application circumstances, there are some camera
group models, in which we can have the reconstruction work
simplified.

(i) when all the camera matrices in a camera group matrix areDefinition 35 (Simplified Camera group mod&pe I). The
central projections, and there exists at least two projec-tyPe | simplified camera group matri%’, consists of camera

tion centers which do not coincide with each other;

matricesé; (i = 1,---, m), which have the common stereoho-
mololgy hyperplaner, and the lines; (j = 1,---,C2) across

(i) when all the camera matrices in a camera group matrix areany two of the stereohomology centers of which, should be par
parallel projections, and there exists at least two projec-allel to the common stereohomology hyperplane

tion directions, which do not coincide with each other;

Property7 (idealized central projection model reconstruction)

(|||) when there are both central projection and para”e' pro- In a reconstruction problem, if all the different views aie o

jection camera matrices in a camera group matrix.

tained from theType | simplified camera group model, then
the calculation of projective depth matiixcan be omitted.

Proof. To prove this statement, we only need to consider the

case when the camera group matgxhas two different camer-
a matrices as sub-projection matrices. Suppose theyaaed
¢» with stereohomology centers ad)(, (). and image hyper-
planes of £)1, and (), respectively. Postmultiply an arbitrary
non-zero homogeneous coordinate vecidptg &2, the current
statement is equivalent to thaf(x): #7-(x)# 0. Since

&), _[E-(
P (X) = [‘52] (x) = [%.(X)}
Use Lemmal7 to the partitioned block mat#k- (X) and%> - (x)
in Eq. (49), the statement will be straightforward. O

(49)

TheoreniY is applicable for all of the multiple projection re
construction problems using central/parallel projecttamera
models with onlyType | constraints.

Proof. The statement can be proved by using Thedrem &1

Definition 36 (Simplified Camera group mod&ype 11). The
Type Il simplified camera group matri®?, consists of camera
matricesé; (i = 1,---,m), which are all parallel projection
matrices.

Property 8. In a reconstruction problem, if all the different
views are obtained from th&pe Il simplified camera group
model, then the calculation of projective depth maltigan be
omitted.

Proof. The statement can be proved by using Thedrem &

Definition 37 (Simplified Camera group mod&pe Il ). The
Type Il simplified camera group matri?, consists of camera
matrices%; (i = 1,---,m), which are all orthogonal parallel

By definition, both Eq.[(46) and E.{A7) represents compygjection matrices.

patible equations, therefore whe# is column full-rank, the
objective matrix obtained by premultiplying?* to these equa-
tions, is a least norm solution, and tBé" is a least norm pseu-

do inverse matrix for”. Due to perturbations, they usually are

contradictory equations; then linear least square appraton
approach is used,and the left-inverse now denote@a E-
g. (48) is the Moore-Penrose pseudo-inverse ofdhe

Property 9 (orthogonal parallel projection model reconstruc-
tion). In the 3D reconstruction problems based on a Type I
camera group matrix model, first, the calculation of the groj
tive depth matrix” can be omitted; second, the camera calibra-
tion can be greatly simplified.

The parallel projection model can be directly applied to

Different 2+s mean different approximation approaches toCAD circumstances, in which cameras are orthogonal paralle

the solution.

projection, the relative positions of cameras are simpid,the

Usually when we begin to reconstruct an objective from itsl’ Matrix is not necessary for reconstruction.

projections, thd” matrix here may not be exactly equal to that

in Eq. (47). What we really need is the objective mag&pand

the normalizeE* can be obtained by applying normalization
operation td&=. Then the reconstruction equation can be rewrit-

ten as:
E=2"("'ov?) (50)
or: = = 7. f@‘f’\e) (51)
then : Ee = y[ﬁ]

In Eq. (51), symbols k&, ¥=, 27, T, with a “wide hat”
are used to represent the corresponding©, 27, I with per-

turbation respectively, which may be from measurementi-floa

ing point roundoff, any kind of distortions, and so on.

Conclusion

(1) The concept oktereohomologyas been proposed refer-
ence coordinate system independently, which includes a
series of commonly used geometric transformations of
which the transformation matrices are elementary matri-
ces.

(2) The elementary matrix representation of stereohomology
can be employed to represent the processes of projection
and reconstruction in computer vision. A novel linear
representation mathematical model has been presented.

(3) The current representation for 3D reconstruction actually
provides a possible axiomatic approach to reconstruction
problems with onlyTYPE | constraints.
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