
On the number of Huffman Codes

Prof. Dr. Ulrich Tipp

2009-12-01

1 The Problem

In [1] the author discusses the question: How many different Huffman Codes are
there? He gave to answers to the question and illustrates it with the following
example:

The Probability distribution is: .11, .12, .13, .14, .24, .26 There is exactly
one way to construct the Huffman tree, namely

3 4

6 5

1 2

The number of different Huffman Codes results by counting the different
choices of Labeling with 0 or 1. The number in this example is 32.

However, it is possible that a probability distribution allows different constric-
tions of Huffman trees

Example: 0.1 0.1 0.2 0.2 0.4 There are three unisomrphic graphs allowed in
the Huffman tree construction.

Case 1

0.20.2

0.10.1

0.2

1

0.4

0.6
0.4

1



Case 2
0.20.2 0.10.1

0.2
0.4

0.6

1

0.4

Case 3 0.10.1

0.20.2

0.40.2

0.60.4

1

The question now is, what are exactly the distributions with the possibility
of unisomorphic Huffman trees? Is there a formula to calculate the number of
different Huffamn Codes in that case?

2 Towards a solution

Definition 1. A Huffman Constellation is a k-tupel of 3-tuples (pi, Gi, li), i =
1, . . . , k consisting of numbers pi(0 < pi ≤ 1), an Isomorphism class Gi of a

binary tree and a natural number li. Furthermore (pi, Gi) 6= (pj , Gj) for all

i 6= j and pi are in ascending order and

k
∑

i=1

pi · li = 1

The Meaning of this Definition is the representation of a state in the con-
struction of the Huffman Code. That means the pi represent the probability of
an already constructed node together with the tree hanging at this node con-
sidered as a root. Nodes with the same probability and the same isomorphism
class of the tree hanging at that node are collected in one 3-tupel. The number
of such nodes is li.

Example: The construction of Huffman tree in Case 2 can be described by

2



the following sequence of Huffman-Constellations

(0.1, [], 2), (0.2, [], 2), (0.4, [], 1)

−→(0.2, [[][]], 1), (0.2, [], 2), (0.4, [], 1)

−→(0.2, [[][]], 1), (0.4, [[][]], 1), (0.4, [], 1)

−→(0.6, [[[][]][[][]]], 1), (0.4, [], 1)

−→(1, [[[[][]][[][]]][]], 1)

We distinguish three different cases:

C0: p1 < p2 < p3 In this case we have to put two nodes with p1 together, if
li > 1 or we have to put a node with p1 and a node with p2 together. In
any case there is only one choice (up to isomorphism of the graph) in the
Huffman Code construction.

C1: p1 = p2 = . . . pr(r ≥ 2) In this case we can put nodes with G1 together (if
l1 > 1) or nodes of G2 together (if l2 > 1) or one with G1 and one with G2

resulting in unisomorphic graphs. The number of different possibilities is

s · r

2
+

(

r − s

2

)

where s is the number of Isomorphism Classes with li > 1.

C2: p1 < p2 = p3 = . . . = pr(r ≥ 3). In this case we have to take a node
with (p1, G1) but we can choose the other node to be (p2, G2). In this
case we have r − 1 different possibilities corresponding to the pairwise
unisomorphic trees G2, . . . , Gr.

After the calculation of different ways to proceed in the Huffman construction
we have to look at the different transitions between the cases. This is a complex
task. If for example we are in case C0. What will be the next state? If l1 = 1 we
know that p1 and p2 are the lowest values. In the next step we will have a node
with p1+p2 instead. Now if p1+p2 < p3 < p4 the new state will be C0. But if for
example p1 + p2 = p3 we have to distinguish whether the corresponding Graphs
are unisomorphic or not. One could write down a complete list of possible
transitions which would be quite lengthy.

References

[1] David Salomon: A Concise Introduction to Data Compression,
UTiCS Springer 2008

3


