
Off-Line Dictionary-Based Compression

The dictionary-based compression methods described in Chapter 3 of the book are
different, but have one thing in common; they generate the dictionary as they go along,
reading data and compressing it. The dictionary is not included in the compressed file
and is generated by the decoder in lockstep with the encoder. Thus, such methods can
be termed “online.” In contrast, the methods described here are also dictionary based,
but can be considered “offline” because they include the dictionary in the compressed
file.

The first method is byte pair encoding (BPE). This is a simple compression method,
due to [Gage 94], that often features only mediocre performance. It is described here
because (1) it is an example of a multipass method (two-pass compression algorithms
are common, but multipasses are normally considered too slow) and (2) it eliminates
only certain types of redundancy and should therefore be applied only to data files that
feature this redundancy. (The second method, by [Larsson and Moffat 00], does not
suffer from these restrictions and is much more efficient.) BPE is both an example of
an offline dictionary-based compression algorithm and a simple example (perhaps the
simplest) of a grammar-based compression method. In addition, the BPE decoder is
very small, which makes it an ideal candidate for applications where memory size is
restricted.

The BPE method is easy to understand. We assume that the data symbols are bytes
and we use the term bigram for a pair of consecutive bytes. Each pass locates the most-
common bigram and replaces it with an unused byte value. Thus, the method performs
best on files that have many unused byte values, and one aim of this document is to show
what types of data feature this kind of redundancy. First, however, a small example.
Given the character set A, B, C, D, X, and Y and the data file ABABCABCD (where X and Y
are unused bytes), the first pass identifies the pair AB as the most-common bigram and
replaces each of its three occurrences with the single byte X. The result is XXCXCD. The
second pass identifies the pair XC as the most-common bigram and replaces each of its
two occurrences with the single byte Y. The result is XYYD, where every bigram occurs
just once. Bigrams that occur just once can also be replaced, if more unused byte values
are available. However, each replacement rule must be appended to the dictionary and
thus ends up being included in the compressed file. As a result, the BPE encoder stops
when no bigram occurs more than once.

What types of data tend to have many unused byte values? The first type that
comes to mind is text. Currently, most text files use the well-known ASCII codes to
encode text. An ASCII code occupies a byte, but only seven bits constitue the actual
code. The eighth bit can be used for a parity check, but is often simply set to zero.
Thus, we can expect 128 byte values out of the 256 possible ones to by unused in a
typical ASCII text file. A quick glance at an ASCII code table shows that codes 0
through 32 (as well as code 127) are control codes, which are used for commands such
as backspace, carriage return, escape, delete, and blank space. It therefore makes sense
to expect only a few of those to appear in any given text file.

The validity of these arguments can be checked by a simple test. The following
Mathematica code prints the unused byte values in a given text file.



2 Off-Line Dictionary-Based Compression

scn = ReadList["Hobbit.txt", Byte];
btc = Table[0, {256}];
Do[btc[[scn[[i]]]] = btc[[scn[[i]]]] + 1, {i, 1, Length[scn]}];
btc
dis = Table[0, {256}]; j = 0;
Do[If[btc[[i]] == 0, {j = j + 1, dis[[j]] = i - 1}], {i, 1, 256}];
Take[dis, j]

It was executed on three chapters from the book Data Compression: The Complete
Reference and on Tolkien’s The Hobbit. The following results were obtained:

Dcomp3: 0–7, 9–11, 13–30, 126–255.
Dcomp4.1: 0–11, 13–30, 126–255.
Dcomp5: 0–7, 9–11, 13–30, 126–255.
Hobbit: 0–7, 9–11, 13–30, 34–36, 42, 46, 60, 63, 87, 89–92, 95, 122–123, 125–255.

The results of this experiment are clear. More than half the byte values are unused.
The 128 values 128 through 255 are unused and the only ASCII control characters used
are BS, FF, US, and Space.

Today, more and more text files are encoded in Unicode, but even such files should
have many unused byte values. (Notice that most Unicodes are 16 bits, but there are
also 8-bit and 32-bit Unicodes.) A typical Unicode text file in an alphabetic language
consists of letters, digits, punctuation marks, and accented letters, so the total number
of codes is around 100–150, leaving many unused byte values. As an example, the 128
Unicodes for Greek and Coptic [Greek-Unicode 07] are 0370 through 03FF, and these do
not use byte values 00, 01, and 04 through 6F. Naturally, text files in an ideograph-based
language, such as Bopomofo or Cuneiforms, easily use all 256 byte values.

Grayscale images constitute another example of data where many byte values may
be unused. A typical image in grayscale may have millions of pixels, each in one of 256
shades of gray, but many shades may be unused. An experiment with the Mathematica
code above indicates 41 unused byte values in the well-known lena image (raw, 128×128,
1-byte pixels), and 35 unused shades of gray (out of 256) in the familiar, raw format,
baboon image of the same resolution.

On the other hand, the same images in color (in raw format, with three bytes per
pixels) use all the 256 byte values and it is easy to see why. A typical color image
may consist of 6–7 million pixels (this is typical for today’s digital cameras) and may
use only a few thousand colors. However, each color occupies three bytes, so even if a
certain color, say (r, g, b)=(108, 56, 213), is unused, there is a good chance that some
pixels have color components 108, 56, or 213.

Thus, Gage’s method makes sense for compressing text and grayscale images. If
applied to other types of data files, a large file should be chopped into small sections
with unused byte values in each.

At any given time, the method looks only at one pair of bytes, but this algorithm
also indirectly takes advantage of longer repeating patterns. Thus, an input file of the
form abcdeabcdfabcdg compresses quite efficiently. The most-common byte pairs are
ab, bc, and cd. If the algorithm selects the first pair and replaces it with the unused byte
x, the file becomes xcdexcdfxcdg. If xc is next selected and is replaced by y, the result



Off-Line Dictionary-Based Compression 3

is ydeydfydg. Now the pair yd is replaced by z, to produce zezfzg. The compression
factor is 15/6 = 2.5, comparable to (or even exceeding) more efficient methods.

The remainder of this section describes a possible implementation of this method
(reference [Gage 94] includes C source code). To compress a file, the entire file must
be input into a buffer in memory (if the file is too large, it has to be compressed in
sections). As an example, we consider an alphabet of the eight symbols a through h
(coded as 0 through 7) and the input file ababcabcd (with symbols e through h unused).

The program constructs the following dictionary (also referred to as a pair-table or
a phrase-table), where each zero in the bottom row indicates an unused character.
0 1 2 3 4 5 6 7

a b c d e f g h
1 1 1 1 0 0 0 0

The first step is to locate the most-common bigram. The simplest approach is to
set up a table of size 256 × 256, initialize it to all zeros, use the two bytes of the next
input bigram as row and column indexes to the table, and increment the particular
entry pointed to by this bigram. The implementation described in [Gage 94] is based
on a hash table that hashes each pair of bytes into a 12-bit number. That number is
used as an index to an array of size 212 = 4,096 and the array location pointed to by
the index is incremented. This works if the number of bigrams in the data file is less
than 4,096 (notice that it can be up to 256 × 256 = 65,536).

Once the most-common bigram is located (ab in our example), it is replaced by
an unused character (h). The file in the buffer becomes hhchcd and the pair-table is
updated to
0 1 2 3 4 5 6 7

a b c d e f g a
1 1 1 1 0 0 0 b
The last entry indicates that byte-pair ab has been replaced by h (code 7).

The next (and last) pass identifies pair hc as the most common bigram and replaces
it with unused symbol g. The file in the buffer becomes hggd and the pair-table is
updated to
0 1 2 3 4 5 6 7

a b c d e f h a
1 1 1 1 0 0 c b
The 7th entry indicates that bigram hc has been replaced by g (code 6).

The pair-table consists of two types of entries. One type (type 1) has a binary flag
in the bottom row indicating used or unused symbols (1 or 0 flags). This type is easy
to identify because the element in the top row is identical to its index (thus, the first
element a had code 0 and is in column 0, while the last element, also a, has code 0
but is in column 7). The other type (type 2) indicates pair substitutions and entries of
this type should be written on the compressed file. Notice that the two types of entries
may be mixed and don’t have to be contiguous. In our example, the pair-table consists
of six type-1 entries followed by two type-2 entries and is written on the compressed
file as the six bytes −6, h, c, 1, a, b, where the first three bytes indicate six irrelevant
type-1 entries (corresponding to codes 0 through 5) followed by one type-2 entry hc



4 Off-Line Dictionary-Based Compression

(corresponding to code 6). The next three bytes indicate one type-2 entry ab (which
corresponds to code 7). The encoding rule for this table is therefore the following: Each
contiguous segment of n type-1 entries followed by a type-2 entry is encoded as −n
followed by the two bytes of the type-2 entry. Each segment of m consecutive type-2
entries is encoded as the byte m followed by the 2m bytes of the entries.

The last feature of the encoder has to do with replacing pairs of bytes in the
buffer. When a pair of bytes xy is replaced by a single byte p, it becomes p-, where
the - indicates an empty byte. There may be several ways to handle empty bytes. The
straightforward way is to move bytes and compact the buffer each time a pair is replaced
by a single byte. This is extremely slow because it may involve many thousands of byte
movements for each replacement. A better approach is to have an auxiliary array of
flags that indicate which byte positions in the buffer are empty. If the size of the buffer
is n bytes, the size of the auxiliary array should be n bits, one-eighth (or 12.5%) the
buffer size. If the buffer contains the 16 bytes the�la-t�fea-ure, then the auxiliary
array should have the two bytes 00000010|00001000, where the two 1’s indicate empty
bytes. When the compressed file is written from the buffer to the output, only those
bytes that correspond to zero bits in the auxiliary array should be written. Another way
to handle empty bytes is to organize the buffer as a linked list and establish another list
(initially empty) of empty bytes. When a byte becomes empty, pointers are updated to
take this byte out of the buffer and append it to the list of empty bytes.

It is now clear that encoding may not be very efficient, but on the other hand the
method never expands the data (except for the overhead from the pair-table). If no
byte values are unused, the data is simply written on the compressed file as is, with the
addition of the pair-table. This should be compared to other, more efficient methods
where the “wrong” type of data may cause significant expansion.

Encoding is slow, requiring multiple passes and a large buffer. Decoding, on the
other hand, is fast. The decoder first reads and expands the pair-table, where only the
type-2 entries are relevant. Bytes are then read from the compressed file. If a byte is
literal (i.e., if it does not appear in the type-2 entries, such as byte d in our example),
it is written to the final output as is. Otherwise, the byte is one of the type-2 entries
and it represents a pair. The pair is constructed and is pushed into a stack. If the stack
is not empty, the next byte is popped from the stack and handled as described above
(which may cause another byte pair to be pushed into the stack). If the stack is empty,
the next byte is read from the compressed file. Being so simple, the decoder is also very
small, which is an advantage (as has been mentioned earlier).

Re-Pair, an efficient offline dictionary algorithm

The performance of BPE depends on the number of unused byte values in the origi-
nal data. The next method (recursive pairing, or Re-Pair, by [Larsson and Moffat 00]) is
a much more sophisticated offline compression algorithm. It features high compression
factors, a fast, small decoder, and it does not depend on the existence of unused byte
values. It also employs sophisticated data structures that make it possible to select the
most-common bigram in each pass without having to scan the entire data each time.

No unused byte values are required. In each pass, the most-common bigram is



Off-Line Dictionary-Based Compression 5

identified and is replaced by a new symbol. We first illustrate this idea symbolically,
using the well-known line from the television film Yabba-Dabba Do! (based on the 1960–
66 animated sitcom The Flintstones). The original data is shown in lowercase and the
new symbols are in uppercase.

Pair String
yabba�dabba,�yabba�dabba�dabba�do

A → ba yabA�dabA,�yabA�dabA�dabA�do
B → ab yBA�dBA,�yBA�dBA�dBA�do
C → BA yC�dC,�yC�dC�dC�do
D → C� yDdC,�yDdDdDdo
E → Dd yEC,�yEEEo
F → yE FC,�FEEo

The compressed file consists of the final string FC,�FEEo and the six-entry dictio-
nary (or phrase-table). Notice that the final string contains one bigram, but replacing
it with a new symbol would require an extra dictionary entry and would therefore con-
tribute nothing to the compression (and may even cause expansion).

The main question is how to add new symbols. Assuming that the original data
consists of bytes and that all the 256 byte values are used, how can we add new symbols?
We can start by placing each 8-bit byte in a pair of bytes (16 bits). Two-byte symbols
can have values from 0 to 216 − 1 = 65,535, so there is room for the original 256 byte
values and 65,280 new symbols. The bigram replacement algorithm is then executed
and a phrase-table is constructed. Once this is done, the algorithm knows how many
new symbols are needed, and the symbols (the 256 original ones and the new ones) are
replaced with variable-length codes.

One way to assign reasonable variable-length codes to the symbols is to count the
number of occurrences of each symbol in the final string and in the phrase-table and
use this information to construct a set of Huffman codes. The table of Huffman codes
becomes overhead that must be included in the compressed file for the decoder’s use.

An alternative is to sort the list of symbols according to their frequencies of oc-
currence and assign them one of the many variable-length codes for the integers, such
as Golomb, Rice, or Elias. The most-common symbols are assigned the shortest codes
and the overhead in this case is the sorting information. This information—which is
a permutation of the symbols, each represented by its variable-length code—must be
included in the compressed file, for the decoder’s use.

In either case, the compressed file consists of three parts, the final string (where
each symbol is represented by its variable-length code), the phrase-table (which must
also be compressed), and the overhead.

The Nakamura Murashima Method

The Nakamura Murashima method ([Nakamura and Murashima 91] and [Naka-
mura and Murashima 96]) also employs new symbols, but encodes the phrase-table
differently. The authors propose two variants, dubbed SCT and SED. The former is



6 Off-Line Dictionary-Based Compression

straightforward. Given the 4-symbol alphabet a, b, c, and d and the source data string
acabbadcaddbaaddcaaddb, SCT encodes it as follows:

Pair String
acabbadcaddbaaddcaaddb

A → ad acabbAcAdbaAdcaAdb
B → Ad acabbAcBbaBcaBb
C → ca aCbbAcBbaBCBb
D → Bb aCbbAcDaBCD

SCT encodes the phrase-table in a simple way and prepends it to the output. It
generates a string that includes two symbols for each table entry. The names of the
new symbols are not included in this string and are assumed to be A, B, C, and so on.
Thus, our phrase-table is encoded as the 8-symbol string adAdcaBb and the complete
encoder output is the string adAdcaBb|aCbbAcDaBCD, where the vertical bar is a special
separator symbol. The decoder reconstructs the phrase-table easily. It reads pairs of
symbols, assigns the first pair to the new symbol A, the second pair to new symbol B,
and so on until it reaches the separator.

The SED method is more complex. It constructs a different phrase-table and its
output is a string of (original and new) symbols where flags distinguish between symbols
and phrase-table entries. Each symbol in the output string is preceded by such a flag (a
bit). A single symbol (either from the original alphabet or a new symbol) is preceded
by a zero, while a phrase-table entry is preceded by a 1. Thus, the already-familiar in-
put string acabbadcaddbaaddcaaddb becomes 0a10c0a0b0b10a0d0c110β0d0b0a0γ0α0δ
(where Greek letters stand for the new symbols). Here is why. The first input symbol a
becomes 0a, but the following pair ca appears several times, so it becomes 10c0a, where
the “1” indicates a new symbol, α. The next pair bb appears only once, so it becomes
0b0b, but the following pair ad repeats several times, so it becomes 10a0d, where the
“1” indicates the next new symbol β. The single c the follows becomes 0c. Notice that
the encoder does not process the pair ca, because the c is followed by the pair ad, which
has already been replaced by β. Thus, the next substring addb becomes βdb, and then
γb (where the new symbol γ is add), and finally the new symbol δ = γb = βdb = addb.
This is encoded as the string 1(10β0d)0b (without the paretheses). The rest of the
encoding is easy to follow.

There remains the question of how to write a hybrid string (with bits and symbols
mixed up) such as 0a10c0a0b0b10a0d0c110β0d0b0a0γ0α0δ on the output. The authors
mention three different methods that employ adaptive arithmetic coding and complete
binary trees, but no details are given.

References:

Gage, Philip (1994) ”A New Algorithm for Data Compression,” C/C++ Users
Journal, 12(2)23–28, Feb 01. This is available online at http://www.ddj.com/cpp/
184402829;jsessionid=LGSEIODZNDHKIQSNDLRSKHSCJUNN2JVN?_requestid=927467.

Greek-Unicode (2007) is http://www.unicode.org/charts/PDF/U0370.pdf.



Off-Line Dictionary-Based Compression 7

Larsson and Moffat (2000) “Off-Line Dictionary-Based Compression,” Proceedings
of the IEEE, 88(11)1722–1732. An earlier, shorter version was published in Proceed-
ings of the Conference on Data Compression 1999, pages 296–305. An implementation is
available at http://www.bic.kyoto-u.ac.jp/pathway/rwan/software/restore.html

Nakamura, Hirofumi and Sadayuki Murashima (1991) “The Data Compression
Based on Concatenation of Frequentative Code Neighbor,” Proceedings of the 14th Sym-
posium on Information Theory and its Applications (SITA ’91), (Ibusuki, Japan), pp.
701–704, December 11–14 (in Japanese).

Nakamura, Hirofumi and Sadayuki Murashima (1996) “Data Compression by Con-
catenations of Symbol Pairs,” Proceedings of the IEEE International Symposium on
Information Theory and its Applications, (Victoria, BC, Canada), pp. 496–499, Septem-
ber.

I would like to acknowledge the help given me by Giovanni Motta and Hirofumi
Nakamura in the preparation of this document.

David Salomon, dsalomon@csun.edu, November 2007


