
I
Introductory
Mathematics

Do not worry too much about your difficulties in mathematics, I can assure you
that mine are still greater.

— Albert Einstein.

I.1 Useful Sums

1. The sum of a geometric series is

n∑
i=0

ai =




0, if a = 0,
n + 1, if a = 1,
1−an+1

1−a , otherwise.
(I.1)

A simple corollary is
∞∑

i=0

ai =
1

1 − a
for |a| < 1. (I.2)

Differentiating Equation (I.2) yields

∞∑
i=0

iai =
a

(1 − a)2
for |a| < 1.

2. The binomial theorem

(a + b)n =
n∑

i=0

(
n

i

)
aibn−i.

920 I. Introductory Mathematics

3. Series expansion of an exponential (Taylor series)

ex =
∞∑

i=0

xi

i!
.

4. The sum of the first n integers

n∑
i=1

i =
n(n + 1)

2
.

5. The sum of the first n integers squared

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6
.

6. Sum of powers of 2

n∑
i=0

2i = 20 + 21 + 22 + · · · + 2n = 2n+1 − 1.

I.2 Matrices

A matrix T is a rectangular array of numbers, where each element aij is identified
by its row and column. Matrix T1 below is “generic,” with m rows and n columns.
Notice how elements aii constitute the main diagonal of the matrix. Matrix T2 is
diagonal (aij = 0 for i �= j), matrix T3, is symmetric (aij = aji), and T4 is an
identity matrix.

T1 =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


 , T2 =




a11 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 a44


 ,

T3 =




33 −17 201 −5
−17 66 26 −68
201 26 21 −9
−5 −68 −9 0


 , T4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

The transpose of matrix A (denoted by AT) is obtained from A by reflecting all
the elements with respect to the main diagonal. A symmetric matrix equals its
transpose.

All problems in computer graphics can be solved with a matrix inversion.

James F. Blinn, 1993.

I.2 Matrices 921

I.2.1 Matrix Operations

The rule for matrix addition/subtraction is cij = aij ± bij , where C = A±B. The
rule for matrix multiplication is slightly more complex: cij =

∑n
k=1 aikbkj . Each

element of C is the dot product of a row of A and a column of B. In the dot product,
corresponding elements from A and B are multiplied, and the products summed.
In order for the multiplication to be well defined, each row of A must have the
same size as a column of B. Matrices A and B can therefore be multiplied only
if the number of columns of A equals the number of rows of B. Note that matrix
multiplication is not commutative, i.e., AB �= BA in general.

An example of matrix multiplication is the product of the 1×3 and 3×1 matrices

(1,−1, 5)


 4

−2
3


 ,

which yields the 1×1 matrix 21.
Tensor products. This is a special case of matrix multiplication. If A is a

column vector and B is a row vector (each with n elements), then their tensor
product C is defined by Cij = AiBj . Example:

 4
−2
3


 (1,−1, 5) =


 4 −4 20

−2 2 −10
3 −3 15


 .

A square matrix has a determinant, denoted by either “detA” or |A|, that is
a number. The determinant of the 2 × 2 matrix

(
a b
c d

)
is defined as ad − bc. The

determinant of a larger matrix can be calculated by the rule (note the alternating
signs): ∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ − a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣ .

Matrix division is not defined, but certain matrices have an inverse. The inverse
of A is denoted A−1, and has the property that AA−1 = A−1A = I, where I is
the identity matrix (with ones in the diagonal and zeros elsewhere). The inverse of
a matrix is used, e.g., to solve systems of linear algebraic equations. Such a system
can be denoted Ax = b where A is the matrix of coefficients, x is the column of
unknowns, and b is the column of the right-hand side coefficients. The solution is
x = A−1b.

Example: The following system of three equations with three unknowns x, y,
and z

x − y = 1,

−x + y = 2,

25x + 2y + z = 3, (I.3)

922 I. Introductory Mathematics

can be written 
 1 −1 0

−1 1 0
25 2 1





 x

y
z


 =


 1

2
3


 .

The inverse of the 3×3 transformation matrix (used in Section 4.32.1)

T =


 a b 0

c d 0
m n 1


 is T−1 =

1
ad − bc


 d −b 0

−c a 0
cn − dm bm − an 1


 . (I.4)

In general, however, the calculation of the inverse is not trivial and can be found in
any text on Linear Algebra, and also in [Press et al. 88]. Page 227 has an interesting
example of the inverse of a matrix.

Here is a summary of the properties of matrix operations:

A + B = B + A, A + (B + C) = (A + B) + C,

k(A + B) = kA + kB, (k + m)A = kA + mA, k(mA) = (km)A = m(kA),
A(BC) = (AB)C, A(B + C) = AB + AC,

(A + B)C = AB + AC, A(kB) = k(AB) = (kA)B,

(A + B)T = AT + BT , (kA)T = kT AT , (AB)T = BT AT .

Information on the history of matrices and determinants can be found at URL
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/, file
Matrices_and_determinants.html.

� Exercise I.1: Add, subtract, and multiply the two matrices

A =


 1 2 3

4 5 6
7 8 9


 , B =


 7 8 9

4 5 6
1 2 3


 .

� Exercise I.2: Calculate the inverse of

T =


 1 −1 0

−1 1 0
25 2 1


 .

A matrix is orthogonal if the dot product of any two different rows is zero (and
the same for columns. A matrix is orthonormal if it is orthogonal and the dot
product of a row with itself is one (and the same for columns). Imagine a square
matrix A. When it is transposed, its rows and columns change roles. A general
element (i, j) of the product AAT is thus the dot product of row i of A and row
j of the same A. Therefore, if A is orthonormal, then AAT is the identity matrix
I. However, the product BB−1 for any matrix B is I (if B has an inverse), so we
conclude that the transpose AT of an orthonormal matrix A equals its inverse A−1.

I.3 Trigonometric Identities 923

The opposite is also true. If AT = A−1 for some matrix A, then A is orthonormal.
It can be shown that an orthonormal matrix is always a rotation matrix, and that
any rotation matrix [Equation (4.48)] is orthonormal.

Eigenvalues and eigenvectors (from the German word for “own”) are useful
mathematical quantities associated with matrices. They are defined as follows: If
A is an n×n matrix and if there exist vectors x and scalars λ such that Ax = λx
[or (A − λI)x = 0], then λ is called an eigenvalue of A, and x is the eigenvector
associated with λ. The eigenvectors of a symmetric matrix are orthogonal.

In principle, calculating the eigenvalues of an n×n matrix involves solving an
nth-degree polynomial equation. Therefore, for n ≥ 5, the results cannot in general
be expressed purely in terms of explicit radicals. Even for the simple matrix

(
a b
−b 2a

)
,

the eigenvalues have the two complicated expressions

1
2

(
3a −

√
a2 − 4b2

)
, and

1
2

(
3a +

√
a2 − 4b2

)
.

This is why mathematical software is used in practice to obtain approximate values
(real and complex) of the eigenvalues and eigenvectors of a given matrix.

Eigenvalues and eigenvectors are mentioned in Section 4.4.8.

Bibliography

Press, W. H., B. P. Flannery, et al. (1988) Numerical Recipes in C: The Art of Scientific
Computing, Cambridge University Press.
(Also available on-line from http://www.nr.com/.)

We [he and Halmos] share a philosophy about linear algebra:
we think basis-free, we write basis-free, but when the chips are
down we close the office door and compute with matrices like fury.

Irving Kaplansky.

I.3 Trigonometric Identities

Many of the identities listed here can be derived with the help of DeMoivre’s theorem
[Equation (Ans.3)].

Basic Identities

tanα =
sin α

cos α
, cot α =

cos α

sinα
=

1
tanα

, csc α =
1

sinα
, sec α =

1
cos α

.

sin(−α) = − sinα, cos(−α) = cos α, tan(−α) = − tanα.

sin2 α + cos2 α = 1, tan2 α + 1 = sec2 α, cot2 α + 1 = csc2 α.

924 I. Introductory Mathematics

Sum and Difference Identities

cos(α ± β) = cos α cos β ∓ sinα sinβ, sin(α ± β) = sinα cos β ± cos α sinβ,

tan(α ± β) =
tanα ± tanβ

1 ∓ tanα tanβ
.

Cofunction Identities

sin(π/2 − α) = cos α, cos(π/2 − α) = sinα, tan(π/2 − α) = cot α.

Multiple Angle and Half Angle Identities

cos 2α = cos2 α − sin2 α = 1 − 2 sin2 α = 2 cos2 α − 1, sin 2α = 2 sinα cos α,

tan 2α =
2 tanα

1 − tan2 α
.

cos(α/2) = ±
√

(1 + cos α)/2, sin(α/2) = ±
√

(1 + cos α)/2.

tan(α/2) = ±
√

1 − cos α

1 + cos α
=

sinα

1 + cos α
=

1 − cos α

sinα
.

Sum and Product Identities

sin α + sinβ = 2 sin
(

α + β

2

)
cos

(
α − β

2

)
,

sinα − sinβ = 2 cos
(

α + β

2

)
sin

(
α − β

2

)
.

cos α + cos β = 2 cos
(

α + β

2

)
cos

(
α − β

2

)
,

cos α − cos β = −2 sin
(

α + β

2

)
sin

(
α − β

2

)
.

sinα cos β =
1
2

[sin(α + β) + sin(α − β)] ,

cos α sinβ =
1
2

[sin(α + β) − sin(α − β)] .

cos α cos β =
1
2

[cos(α + β) + cos(α − β)] ,

sin α sin β = −1
2

[cos(α + β) − cos(α − β)] .

Note that the line above also implies

cos2 α =
1
2

(cos(2α) + 1) , sin2 α =
1
2

(1 − cos(2α)) .

Laws of Sines and Cosines: any triangle with sides a, b, c and angles α, β, γ
satisfies the law of sines a/ sin α = b/ sinβ = c/ sin γ and the law of cosines

a2 = b2 + c2 − 2bc cos α, b2 = a2 + c2 − 2ac cos β, c2 = a2 + b2 − 2ab cos γ.

I.4 Vector Algebra 925

Mathematics is the only universal language there is, senator!
— Jodie Foster (as Ellie Arroway) in Contact (1977).

I.4 Vector Algebra

A vector is a mathematical entity with two attributes, direction and magnitude
(notice that a vector has no spatial position). The magnitude of vector P = (x, y, z)
(also called its absolute value) is |P| =

√
x2 + y2 + z2. The direction of a vector can

be expressed by the cosines of the angles it makes with the coordinate axes x/|P|,
y/|P|, and z/|P|. Note that the vector (x/|P|, y/|P|, z/|P|) has a magnitude of 1
(it is a unit vector).

The three unit vectors in the directions of the coordinate axes are traditionally
denoted i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).

I.4.1 Operations on Vectors

Vector addition is defined by adding the individual elements of the vectors being
added. Thus, P + Q = (Px, Py, Pz) + (Qx, Qy, Qz) = (Px + Qx, Py + Qy, Pz + Qz).
This operation is both commutative (P+Q = Q+P) and associative P+(Q+T) =
(P + Q) + T. Subtraction of vectors P − Q is done similarly and results in the
vector from Q to P.

Vectors can be multiplied in three different ways:
1. The multiplication of a scalar by a vector is defined by αP = (αx, αy, αz).

It changes the magnitude of the vector (by a factor α), but not its direction. This
operation is distributive with respect to vector addition or subtraction, α(P±Q) =
αP ± αQ.

2. The dot product of two vectors is denoted by P • Q and is defined as the
scalar

(Px, Py, Pz)(Qx, Qy, Qz)T = PQT = PxQx + PyQy + PzQz.

This also equals |P| |Q| cos θ, where θ is the angle between the vectors. The dot
product of perpendicular vectors (also called orthogonal vectors) is thus zero. The
dot product is commutative, P •Q = Q •P and is also distributive with respect to
vector addition or subtraction P • (Q ± T) = P • Q ± P • T.

The triple product (P • Q)R is sometimes useful. It can be represented as

(P • Q)R
= (PxQx + PyQy + PzQz)(Rx, Ry, Rz)
=

(
(PxQx + PyQy + PzQz)Rx, (PxQx + PyQy + PzQz)Ry, (PxQx + PyQy + PzQz)

)
Rz

= (Qx, Qy, Qz)


 PxRx PyRx PzRx

PxRy PyRy PzRy

PxRz PyRz PzRz




= Q(PR), (I.5)

where the notation (PR) stands for the 3×3 matrix above.

926 I. Introductory Mathematics

3. The cross product of two vectors (also called the vector product) is denoted
P×Q and is defined as the vector

(P2Q3 − P3Q2,−P1Q3 + P3Q1, P1Q2 − P2Q1). (I.6)

It is easy to show that P×Q is perpendicular to both P and Q.

� Exercise I.3: Prove it!

The following expressions show how P × Q can be expressed by means of a
determinant.

P×Q =

∣∣∣∣∣∣
i j k

P1 P2 P3

Q1 Q2 Q3

∣∣∣∣∣∣ = i
∣∣∣∣ P2 P3

Q2 Q3

∣∣∣∣ − j
∣∣∣∣ P1 P3

Q1 Q3

∣∣∣∣ + k
∣∣∣∣ P1 P2

Q1 Q2

∣∣∣∣
= (P2Q3 − P3Q2,−P1Q3 + P3Q1, P1Q2 − P2Q1),

or, alternatively, by means of a matrix

= (Q1, Q2, Q3)


 0 P3 −P2

−P3 0 P1

P2 −P1 0


 . (I.7)

� Exercise I.4: The cross product P×Q is perpendicular to both P and Q. In what
direction does it point?

The cross product is not commutative and is not associative. It is, however,
distributive with respect to addition or subtraction of vectors. Hence P×(Q±T) =
P×Q ± P×T.

The magnitude of P×Q equals |P| |Q| sin θ, where θ is the angle between the
two vectors. The cross product therefore has a simple geometric interpretation. Its
magnitude equals the area of the parallelogram defined by the two vectors.

� Exercise I.5: Given that P×Q = 0, what does it tell us about the vectors involved?

As an example, the vector equation of a straight line is shown below for the
case where the direction of the line and one point on the line are known. Assume
that d is a unit vector in the direction of the line and P1 is a given point on the
line. The equation of the entire line is

P(t) = P1 + td, for any real t. (I.8)

� Exercise I.6: Derive the vector line equation for the straight segment between two
given points P1 and P2.

What if angry vectors veer
Round your sleeping head, and form.
There’s never need to fear
Violence of the poor world’s abstract storm.
— Robert Penn Warren, Lullaby in Encounter, 1957.

I.4 Vector Algebra 927

I.4.2 The Scalar Triple Product

The scalar triple product of three vectors P, Q, and R is defined as

S = P • (Q × R) = P1(Q2R3 − Q3R2) + P2(Q3R1 − Q1R3) + P3(Q1R2 − Q2R1)

=

∣∣∣∣∣∣
P1 P2 P3

Q1 Q2 Q3

R1 R2 R3

∣∣∣∣∣∣ . (I.9)

Interchanging two rows in a determinant changes its sign, so interchanging rows
twice leaves the determinant unchanged. This is why the triple product is not
affected by a cyclic permutation of its three components. We can therefore write

S = P • (Q×R) = Q • (R×P) = R • (P×Q).

The triple product has a simple geometric interpretation. It equals the volume
of the parallelepiped defined by the three vectors. An important corollary is: If
the three vectors are coplanar, then the parallelepiped defined by them has volume
zero, implying that their scalar triple product is zero.

I.4.3 Projecting a Vector

A common and useful operation on vectors is projecting a vector a on another vector
b. The idea is to break vector a up into two perpendicular components c and d,
such that c is in the direction of b.

a

b
c

d

N

l r

N

d d

c −c

(a) (b) (c)

ααα

Figure I.1: Projecting a Vector.

Figure I.1a shows that a = c + d and |c| = |a| cos α. On the other hand
a • b = |a| |b| cos α, yielding the magnitude of c

|c| = |a| (a • b)
|a| |b| =

(a • b)
|b| . (I.10)

The direction of c is identical to the direction of b, so we can write vector c as

c = |c| b
|b| =

(a • b)
|b|2 b. (I.11)

928 I. Introductory Mathematics

Example: Given vectors a = (2, 1) and b = (1, 0) it is easy to calculate

c =
(a • b)
|b|2 b =

2×1 + 1×0
12 + 02

(2, 0) = (4, 0), d = a − c = (−2, 1).

� Exercise I.7: The projection method above works also for three-dimensional vec-
tors. Given vectors a = (2, 1, 3) and b = (1, 0,−1), calculate the projection of a on
b.

� Exercise I.8: Vectors and their operations have been known for a long time. Ex-
plain why they have become important in the last few decades, since the introduc-
tion of the digital computer.

I.5 Complex Numbers

Complex numbers are expressed in terms of the special number i that is defined as√
−1 and, hence, satisfies i×i = i2 = −1. Any complex number z can be represented

either as the sum a+bi or as the pair (a, b), where a and b are real. The conjugate of
z is denoted by z∗ and is defined as a− bi. Complex conjugates roughly correspond
to negative real numbers. The sum of the real numbers a and −a is zero and the
sum z+z∗ is 2a, which is real. The magnitude or absolute value of a complex number
is denoted by |z| and is defined as

√
z · z∗ =

√
a2 + b2. The sum and the difference

of the complex numbers a+ bi, c+di are the obvious (a+ b)± (c+d)i. The product
makes use of the relation i2 = −1 and is (a + bi)(c + di) = (ac − bd) + (ad + bc)i.
The inverse, z−1, of z is defined as z∗/|z|. It corresponds to the reciprocal 1/a of a
real number a. The division z1/z2 is easy to perform for |z2| �= 0:

z1

z2
=

z1z
∗
2

z2z∗2
=

(a + bi)(c − di)
c2 + d2

=
(

ac + bd

c2 + d2
,
bc − ad

c2 + d2

)
.

The multiplication rule of complex numbers can be interpreted as a rotation in
two dimensions. This is easy to see if we consider the product of the two complex
numbers (x, y) and (cos θ, sin θ).

(x, y) · (cos θ, sin θ) = (x cos θ − y sin θ, x sin θ + y cos θ)

= (x, y)
(

cos θ sin θ
− sin θ cos θ

)
.

(I.12)

This product rotates the two-dimensional point (x, y) through an angle θ about the
origin.

� Exercise I.9: Use the rule of complex number multiplication to multiply the com-
plex number (0, 1) by itself.

� Exercise I.10: Use the rule of complex number multiplication to multiply the
complex number (a, b) by the number (−a,−b).

I.5 Complex Numbers 929

The shortest path between two truths in the real domain passes through
the complex domain.

—Jacques Hadamard.

Complex numbers can be represented graphically as two-dimensional points
where the real part is the x coordinate and the imaginary part is the y coordinate.
Such a representation is called an Argand diagram.

We normally use the Cartesian coordinates (a, b) of a point P. The polar
coordinates of P are (r, θ), where r =

√
a2 + b2 is the distance of the point from

the origin and θ = arctan(b/a) is the angle between the x axis and vector r. Given
a complex number z = (x, y), r is its absolute value and θ is called its argument
(arg for short). The polar coordinates can be obtained from the Cartesian ones by
(a, b) = (r cos θ, r sin θ). Since the complex number z = (a, b) can be interpreted
as a two-dimensional point, it has the polar representation z = (r cos θ, r sin θ) =
r(cos θ + i sin θ). This representation is useful in many applications.

The famous Euler formula

eiθ = cos θ + i sin θ

allows us to write z = reiθ, a representation that makes it easy to multiply and
divide complex numbers

z1z2 = r1r2e
i(θ1+θ2),

z1

z2
= r1r2e

i(θ1−θ2),

and even extract roots

n
√

z = n
√

r

[
cos

(
θ + 2kπ

n

)
+ i sin

(
θ + 2kπ

n

)]
, k = 0, 1, . . . , n − 1.

The n roots of z can be visualized as equally-spaced points lying on the circum-
ference of a circle of radius n

√
r whose center is at the origin. Connecting them

produces an n-sided regular polygon.

� Exercise I.11: (Mathematical.) We know that i =
√
−1. What is

√
i ?

� Exercise I.12: While we are at it, what are ii and ln i ?

Bibliography

Nahin, Paul J., (1998) An Imaginary Tale: The Story of
√
−1, Princeton, NJ, Princeton

University Press.

930 I. Introductory Mathematics

The Complex Number Song

(Tune: John Brown’s Body)
Mine eyes have seen the glory of the Argand diagram
They have seen the i’s and thetas of De Moivre’s mighty plan
Now I can find the complex roots with consummate elan
With the root of minus one
Complex numbers are so easy
Complex numbers are so easy
Complex numbers are so easy
With the root of minus one
In Cartesian co-ordinates the complex plane is fine,
But the grandeur of the polar form this beauty doth outshine
You be raising i+40 to the power of 99
With the root of minus one
You’ll realise your understanding was just second rate
When you see the power and magic of the complex conjugate
Drawing vectors corresponding to the roots of minus eight
With the root of minus one

(Attributed to Mrs P. E. Perella.)

I.6 Convolution

This is an important quantity that has several practical applications. It is used
in Sections 5.6.1 and 5.8. We start with the simple, intuitive concept of a system.
This is anything that receives input and generates output in response. The input
and output can be one-dimensional (a function of the time), two-dimensional (a
function of two spatial variables), or can have any number of dimensions. We will
be concerned with the relation of the output to the input, not with the internal
operation of the system. We will also concentrate on linear systems, since they are
both simple and important. A linear system is defined as follows: If input x1(t)
produces output y1(t) [we denote this by x1(t) → y1(t)] and if x2(t) → y2(t), then
x1(t) + x2(t) → y1(t) + y2(t). Any system that does not satisfy this condition is
considered nonlinear.

This definition implies that 2x1(t) = x1(t) + x1(t) → y1(t) + y1(t) = 2y1(t) or,
in general, a x1(t) → a y1(t) for any real a.

Some linear systems are shift invariant. If such a linear system satisfies x(t) →
y(t), then x(t − T) → y(t − T), i.e., shifting the input by an amount T shifts
the output by the same amount, but does not otherwise affect the output. In the
discussion of convolution, we assume that the systems in question are linear and
shift-invariant. This is true (or true to a very good approximation) for electrical
networks and optical systems, the main pieces of hardware used in image processing
and compression.

It is useful to have a general relation between the input and output of a linear,

I.6 Convolution 931

System. Frequently used without need.
Dayton has adopted the Dayton has adopted government
commission system of government. by commission.
The dormitory system Dormitories

— Strunk and White, The Elements of Style.

shift-invariant system. It turns out that the expression

y(t) =
∫ +∞

−∞
f(t, τ)x(τ) dτ, (I.13)

is general enough for this purpose. In other words, there is always a two-parameter
function f(t, τ) that can be used to predict the output y(t) if the input x(τ) is
known. However, we want to express this relation with a one-parameter function,
and we use the shift-invariance of the system for this purpose. For a linear, shift-
invariant system we can write

y(t − T) =
∫ +∞

−∞
f(t, τ)x(τ − T) dτ.

If we change variables by adding T to both t and τ , we get

y(t) =
∫ +∞

−∞
f(t + T, τ + T)x(τ) dτ. (I.14)

Comparing Equations (I.13) and (I.14) shows that f(t, τ) = f(t + T, τ + T). Thus,
function f has the property that if we add T to both its parameters, it does not
change. The function is constant as long as the difference between its parameters
is constant. Function f depends only on the difference of its parameters, so it is
essentially a single parameter function. We can therefore write g(t − τ) = f(t, τ),
which changes Equation (I.13) to

y(t) =
∫ +∞

−∞
g(t − τ)x(τ) dτ. (I.15)

This is the convolution integral, an important relation between x(t) and y(t) or
between x(t) and g(t). This relation is denoted y = g ? x and it says that the
output of a linear, shift-invariant system is given by the convolution of its input
with a certain function g(t) (or by convolving x with g). Function g, which is
characteristic of the system, is called the impulse response of the system. Figure I.2
shows a graphical description of a convolution, where the final result (the integral)
is the gray area under the curve.

932 I. Introductory Mathematics

input function convolving function

functions superimposed product of functions

x(t)

x(t)

g(τ)

g(0−τ) g(t−τ)

g(t−τ)

g(τ) reflected g(τ) reflected and shifted

t

t t

t

t t

Figure I.2: The Convolution of x(t) and g(t).

“Oh no,” George said. “It was more than money.”
He leaned his forehead in his hand and tried to remember what else more

than money. The darkness inside his head was full of convolutions. His eardrums
were too tight. Only the higher registers of sound were getting through.

—Paul Scott, The Bender

g(t)

input function smooth function

f(t)

Figure I.3: Applying Convolution to Denoising a Function.

I.6 Convolution 933

The convolution has a number of important properties. It is commutative,
associative, and distributive over addition. These properties are shown in Equa-
tion (I.16)

f ? g = g ? f,

f ? (g ? h) = (f ? g) ? h, (I.16)
f ? (g + h) = f ? g + f ? h.

Practical problems normally involve discrete sequences of numbers, rather than
continuous functions, so the discrete convolution is useful. The discrete convolution
of the two sequences f(i) and g(i) is defined as

h(i) = f(i) ? g(i) =
∑

j

f(j) g(i − j). (I.17)

If the lengths of f(i) and g(i) are m and n, respectively, then h(i) has length
m + n − 1.

Example: Given the two sequences f =
(
f(0), f(1), . . . , f(5)

)
(six elements)

and g =
(
g(0), g(1), . . . , g(4)

)
(five elements), Equation (I.17) yields the ten ele-

ments of the convolution h = f ? g

h(0) =
0∑

j=0

f(j)g(0 − j) = f(0)g(0)

h(1) =
1∑

j=0

f(j)g(1 − j) = f(0)g(1) + f(1)g(0)

h(2) =
2∑

j=0

f(j)g(2 − j) = f(0)g(2) + f(1)g(1) + f(2)g(0)

h(3) =
3∑

j=0

f(j)g(3 − j) = f(0)g(3) + f(1)g(2) + f(2)g(1) + f(3)g(0)

h(4) =
4∑

j=0

f(j)g(4 − j) = f(0)g(4) + f(1)g(3) + f(2)g(2) + f(3)g(1) + f(4)g(0)

h(5) =
5∑

j=1

f(j)g(5 − j) = f(1)g(4) + f(2)g(3) + f(3)g(2) + f(4)g(1) + f(5)g(0)

h(6) =
5∑

j=2

f(j)g(6 − j) = f(2)g(4) + f(3)g(3) + f(4)g(2) + f(5)g(1)

h(7) =
5∑

j=3

f(j)g(7 − j) = f(3)g(4) + f(4)g(3) + f(5)g(2)

934 I. Introductory Mathematics

h(8) =
5∑

j=4

f(j)g(8 − j) = f(4)g(4) + f(5)g(3)

h(9) =
5∑

j=5

f(j)g(9 − j) = f(5)g(4)

A simple example of the use of a convolution is smoothing (or denoising).
This shows how convolution can be used as a filter. Given a noisy function f(t)
(Figure (I.16)), we select a rectangular pulse as the convolving function g(t). It is
defined as

g(t) =




1, −a/2 < t < a/2,
1
2 , t = ±a/2,
0, elsewhere,

where a is a suitably small value (typically 1, but could be anything). As the
convolution proceeds, the pulse is moved from left to right and is multiplied by
f(t). The result of the product is a local average of f(t) over an interval of width
a. This has the effect of suppressing the high frequency fluctuations of f(t).

From the Dictionary

convolution: coiling together
convolve: roll together

I.7 Voronoi Diagrams

Imagine a petri dish ready for growing bacteria. Four bacteria of different types are
simultaneously placed in it at different points and immediately start multiplying.
We assume that their colonies grow at the same rate. Initially, each colony consists
of a growing circle around one of the starting points. After a while some of them
meet and stop growing in the meeting area due to lack of food. The final result is
that the entire dish gets divided into four areas, one around each of the four starting
points, such that all the points within area i are closer to starting point i than to any
other start point. Such areas are called Voronoi regions or Dirichlet tessellations.
Figure I.4a shows the Voronoi regions for four points placed approximately at the
four corners of a dashed rectangle. The regions are close to the four quadrants
of the rectangle. Figure I.4b,c shows how the regions change when the points are
moved.

At the time of writing there are on the web several Java applets that demon-
strate the concepts discussed here. A typical example is [Zhao 98].

Bibliography

Zhao, Zhiyuan (1998) is an applet at
http://ra.cfm.ohio-state.edu/~zhao/algorithms/algorithms.html.

I.8 L Systems 935

(a) (b) (c)

Figure I.4: Three Voronoi Diagrams of Four Points.

I.8 L Systems

Lindenmayer Systems (or L-systems for short) were developed by the biologist Aris-
tid Lindenmayer in 1968 as a tool [Lindenmayer 68] to describe the morphology of
plants. They were initially used in computer science, in the 1970s, as a tool to de-
fine formal languages, but have become really popular only after 1984, when Alvy
Ray Smith pointed out [Smith 84] that L-systems can be used to draw many types
of fractals, in addition to their use in botany. Today L-systems are also used to
generate tilings, geometric art, and even musical scores.

The main idea of L-systems is to define a complex object by (1) defining an
initial simple object, called the axiom, and (2) giving rules that show how to replace
parts of the axiom.

The following true story is an example of Aristid’s modesty.
At one of the American conferences somebody asked him what the
L in “L-systems” stands for. Aristid’s answer was “Languages.”

—Grzegorz Rozenberg.

The rules are applied successively, creating parts that get more and more com-
plex, thereby transforming the simple axiom closer to the final, complex goal. The
rules are called rewriting or production rules, and are an extension of Chomsky’s
work on formal grammars, and also of the BNF notation. N. Chomsky showed, in
the 1950s, how to describe the syntax of a natural language by means of production
rules. At about the same time Backus and Naur developed the BNF notation, which
is based on rewriting rules, specifically to provide a formal definition [Naur 60] of
the syntax of ALGOL 60.

Figure I.5 shows how a fractal, the Koch snowflake curve, is constructed, in
several steps, out of an axiom that is a simple triangle (I.5a) and a rewriting rule
that says: Replace each straight segment with the curve of I.5b. Figure I.5c is the

936 I. Introductory Mathematics

(a) (b) (c)

(b) (c)

Figure I.5: Successive Generations of the Koch Snowflake.

result of applying the rule on all three triangle sides. Figure I.5d is the result of
applying the same rule on all 12 sides of I.5c, and so on.

Notice that in order to construct iteration i + 1 of an object, the rule has to
be applied to all parts of iteration i of the object. This is the main difference
between L-systems and Chomsky grammars, and this is also one reason why L-
systems are so powerful. Another reason is the notation used in modern L-systems,
a notation introduced in 1979 by A. Szilard and R. E. Quinton and improved by
P. Prusinkiewicz in 1986. It is based on the LOGO language [Abelson 82] and the
concept of turtle moves. These two differences are illustrated below.

Example: An L-system dealing with the two letters x and y. The axiom
is y and the two rewriting rules are: x → xy (every occurrence of x should be
replaced by xy) and y → x (every occurrence of y should be replaced by x). The
first iteration starts with the axiom y, and applies both rules to it. The first rule
does not apply, and the second yields x. The result of the first iteration is thus x.
Iteration 2 applies both rules to x. The first rule replaces x by xy and the second
rule does not apply, since the original string x did not have any y in it. Iteration
3 replaces the x of xy by xy and the y of xy by x. The result is xyx. Successive
iterations produce the strings

y → x → xy → xyx → xyxxy → xyxxyxyx.

(This does not seem useful, but wait until this method is applied to geometric
shapes.) The two parts on the left and right of a production rule are called its
predecessor and successor, respectively. An L-system such as the one above is called

I.8 L Systems 937

a D0L-system. (D0L stands for Deterministic, Context-Free L-system. Notice that
most texts on L-systems corrupt this name and spell it “DOL” instead of “D0L.”)

Turtle Moves: It is possible to define geometric shapes by imagining a turtle
moving in the two-dimensional plane, sometimes leaving marks behind. The LOGO
programming language supports drawing commands that “move” the turtle from
point to point and cause it to turn at an angle when it reaches a point. The
production rules of L-systems also use this notation. Mathematically, the state of
the turtle is represented by a triplet (x, y, α) where (x, y) are the present coordinates
of the turtle and α is its heading. The basic notation used in such a rule employs
the following characters:

F : The turtle moves forward a distance d, drawing a straight line of a given thick-
ness W . The state of the turtle changes from (x, y, α) to (x + d cos α, y +
d sin α, α).

f : The turtle moves forward as above, but without drawing anything.
+ : The turtle turns to the right (clockwise) by a given angle δ. Its new state is

thus (x, y, α + δ).
− : The turtle turns to the left (counterclockwise) by the same angle δ. Its new

state is (x, y, α − δ).

Table I.7 shows several more character commands that have traditionally been
used in L-systems. As more research is done in this field, the number of turtle
commands will grow, but the reader has to keep one important convention in mind:
When a rewriting rule contains a command that the turtle (i.e., the computer
implementation of L-systems) does not understand, that command is ignored; no
error message is issued. This convention is useful and is commonly used in drawing
complex shapes.

Table I.7 implies that several more parameters, such as C, sl, and ∆, are needed
to completely specify the shape being drawn. These parameters should be supported
by any computer implementation of L-systems; they should have default values, and
should be easy for the user to modify. These parameters are listed in Table I.8.

The string F+F+F+F is a command to move forward one line length, turn right,
and repeat three more times. If the turn angle is 90◦, the result is a square of size d.
If the initial turtle heading is α = 90◦, then the start/end point is the bottom left
corner of the square (Figure I.9a). The string FFF+FF+F+F-F-F-FF+F+FFF draws
the shape of Figure I.9b.

The Koch snowflake of Figure I.5 was generated by an L-system with an axiom
F++F++F and the single production rule F->F-F++F-F. The initial heading was 0◦

and the turn angle 60◦. Figure I.6 shows three iterations of the Peano space-filling
curve drawn with both an initial heading and a turn angle of 90◦.

The L-system for this curve consists of the axiom X and the two production
rules

X->XFYFX+F+YFXFY-F-XFYFX and Y->YFXFY-F-XFYFX+F+YFXFY.

The key to understanding this L-system is the rule that any unknown turtle com-
mands (in this case the characters X and Y) should be ignored. The first iteration
draws the axiom X, which is unknown, causing nothing to be drawn. The next
iteration executes the two rewriting rules. The first rule replaces the axiom X with

938 I. Introductory Mathematics

(a) (b) (c)

Figure I.6: Three Iterations of the Peano Curve.

XFYFX+F+YFXFY-F-XFYFX, which is plotted (since X and Y are unknown) as FF+F+FF-
F-FF. The second rule looks for a Y in the axiom, but finds none. The iteration thus
draws FF+F+FF-F-FF, which results in Figure I.6a. The next iteration starts with
XFYFX+F+YFXFY-F-XFYFX, replaces each X with the successor of rule 1, and replaces
each Y with the successor of rule 2. The result is a very long string, that, when
drawn, produces the curve of Figure I.6b.

The L-system for the Hilbert curve is similarly defined by the axiom X and the
2 production rules

X->-YF+XFX+FY- and Y->+XF-YFY-FX+.

� Exercise I.13: Show how to get the 4 orientations of the Hilbert curve out of the
L-system above.

Abelson, H. and A. A. diSessa (1982) Turtle Geometry, Cambridge, MA, MIT
Press.

Prusinkiewicz, Przemyselaw (1986) Graphical Applications of L-systems, in
Proc. of Graphics Interface ’86—Vision Interface ’86, pp .247–253.

Prusinkiewicz, P., and A. Lindenmayer (1990) The Algorithmic Beauty of
Plants, New York, Springer Verlag.

Prusinkiewicz, P., A. Lindenmayer, and F. D. Fracchia (1991) “Synthesis of
Space-Filling Curves on the Square Grid,” in Fractals in the Fundamental and
Applied Sciences, edited by Peitgen, H.-O. et al., Amsterdam, Elsevier Science
Publishers, pp. 341–366.

Smith, Alvy Ray (1984) “Plants, Fractals and Formal Languages,” Computer
Graphics 18(3):1–10.

Szilard, A. L. and R. E. Quinton (1979) “An Interpretation for D0L Systems
by Computer Graphics,” The Science Terrapin 4:8–13.

I.8 L Systems 939

F Move forward d units and draw a line.
f Move forward d units without drawing.
+ Turn clockwise by an angle δ.
- Turn counterclockwise by an angle δ.
| Reverse direction (rotate by 180◦).
[Push current turtle state into the stack.
] Pop current turtle state from the stack.
Increment the line width W by an amount w.
! Decrement the line width W by an amount w.
@ Draw a dot with radius W .
{ Open a polygon.
} Close a polygon and fill it with color C.
< Divide line length d by scale factor sl.
> Multiply line length d by scale factor sl.
& Swap meaning of + and −.
(Decrement turn angle δ by ∆.
) Increment turn angle δ by ∆.
* Match any character (used in context-sensitive L-systems only).
. . . Ignore rule (used in context-sensitive L-systems only).

Table I.7: L-system Conventions for Turtle Commands.

d The line length.
sl Scale factor for line length d.
W The line width.
w The line width increment.
α The initial turtle heading.
δ Turn angle.
∆ Increment/decrement the turn angle δ.
C Default color for polygon fill.

Table I.8: Additional Turtle Parameters.

Start Start(a) (b)

Figure I.9: Examples of Turtle Movements.

940 I. Introductory Mathematics

I.9 The Greek Alphabet
A α alpha I ι iota P ρ D rho
B β beta K κ kappa Σ σ ς sigma
Γ γ gamma Λ λ lambda T τ tau
∆ δ delta M µ mu Y υ upsilon
E ε epsilon N ν nu Φ φ ϕ phi
Z ζ zeta Ξ ξ xi X ξ xi
H η eta O o omicron Ψ ψ psi
Θ θ theta Π π Q pi Ω ω omega

I.10 Interpolating Polynomials

This section shows how to predict the value of a pixel from those of 16 of its near
neighbors by means of a two-dimensional interpolating polynomial. The results are
used in Table 4.118.

We start with an intuitive discussion of the term interpolation. Given two
numbers a and b, their average (a + b)/2 is always located midway between them,
so we can use the average to interpolate them. However, given four numbers a,
b, c, and d, their average (a + b + c + d)/4 is not a good interpolation, since it is
not located “midway” between the four. A simple example is the four numbers 1,
1, 1, and 100. Their average is close to 25, so it is nowhere “in the middle” of
the four numbers. Interpolating four numbers is therefore done by (1) converting
the numbers to two-dimensional points, (2) calculating a smooth curve that passes
through the points, and (3) finding the midpoint of the curve.

Any numbers a, b, c, and d can be converted to the points (1, a), (2, b), (3, c),
and (4, d). It is intuitively clear that the midpoint (x, y) of a smooth curve that
passes through those points is a good candidate for the title “the interpolation of
the four points.” The y coordinate becomes the interpolation of the four numbers,
and the x coordinate is ignored.

This method is called one-dimensional interpolation. It can be extended to
more than four numbers, and also to pixels, where it becomes two-dimensional
interpolation. As mentioned before, we want to use a group of 16 neighboring pixels
to predict the value of a pixel at the center of the group. The main idea is to consider
the 16 neighbor pixels a 4×4 equally-spaced points on a surface (where the value of a
pixel is interpreted as the height of the surface) and to derive a polynomial function
P(u, w) that passes through all 16 points. Graphically, P(u, w) can be thought
of as a surface. The value of the pixel at the center of the 4×4 group can then
be predicted by calculating the height of the center point P(.5, .5) of the surface.
Mathematically, this surface is the two-dimensional polynomial interpolation of the
16 points.

I.10.1 One-Dimensional Interpolation

A surface can be viewed as an extension of a curve, so we start by deriving a one-
dimensional polynomial (a curve) that interpolates four points, then extend it to a
two-dimensional polynomial (a surface) that interpolates a grid of 4×4 points.

Given four points P1, P2, P3, and P4 we look for a polynomial that will pass
through them. In general, a polynomial of degree n in x is defined (Section 3.23)

I.10 Interpolating Polynomials 941

as the function

Pn(x) =
n∑

i=0

aix
i = a0 + a1x + a2x

2 + · · · + anxn, (I.18)

where ai are the n + 1 coefficients of the polynomial and the parameter x is a real
number. The one-dimensional interpolating polynomial that is of interest to us is
special, and differs from the definition above in two respects

1. This polynomial goes from point P1 to point P4. Its length is finite, and it
is therefore better to describe it as the function

Pn(t) =
n∑

i=0

ait
i = a0 + a1t + a2t

2 + · · · + antn; where 0 ≤ t ≤ 1.

This is the parametric representation of a polynomial. We want this polynomial to
go from P1 to P4 when the parameter t is varied from 0 to 1.

2. The only given data are the four points and we have to use them to calculate
all n+1 coefficients of the polynomial. This suggests the value n = 3 (a polynomial
of degree 3, a cubic polynomial; one which has four coefficients). The idea is to
set up and solve four equations, with the four coefficients as the unknowns, and
with the four points as known quantities. Thus, we use the notation (T indicates
transpose)

P(t) = at3 + bt2 + ct + d = (t3, t2, t, 1)(a,b, c,d)T = T(t) · A. (I.19)

The four coefficients a,b, c,d are shown in boldface because they are not numbers.
Keep in mind that the polynomial has to pass through the given points, so the value
of P(t) for any t must be the three coordinates of a point. Each coefficient should
therefore be a triplet. T(t) is the row vector (t3, t2, t, 1), and A is the column vector
(a,b, c,d)T . Calculating the curve therefore involves finding the values of the four
unknowns a, b, c, and d. P(t) is called a parametric cubic (or PC) polynomial.

It turns out that degree 3 is the smallest one that is still useful for an interpo-
lating polynomial. A polynomial of degree 1 has the form P1(t) = ct + d and is,
therefore, a straight line, so it can only be used in special cases. A polynomial of
degree two (quadratic) has the form P2(t) = bt2 + ct + d and is a conic section, so
it can only take a few different shapes. A polynomial of degree 3 (cubic) is thus the
simplest one that can take on complex shapes, and can also be a space curve.

� Exercise I.14: Prove that a quadratic polynomial must be a plane curve.

Our ultimate problem is to interpolate pixels. Pixels are always equally-spaced,
so we assume that the two interior points P2 and P3 are equally spaced between
P1 and P4. The first point P1 is the start point P(0) of the polynomial, the last
point, P4 is the endpoint P(1), and the two interior points P2 and P3 are the two
equally-spaced interior points P(1/3) and P(2/3) of the polynomial.

942 I. Introductory Mathematics

We thus write P(0) = P1, P(1/3) = P2, P(2/3) = P3, P(1) = P4, or

a(0)3 + b(0)2 + c(0) + d = P1,

a(1/3)3 + b(1/3)2 + c(1/3) + d = P2,

a(2/3)3 + b(2/3)2 + c(2/3) + d = P3,

a(1)3 + b(1)2 + c(1) + d = P4.

These equations are easy to solve and the solutions are:

a = −9/2P1 + 27/2P2 − 27/2P3 + 9/2P4,

b = 9P1 − 45/2P2 + 18P3 − 9/2P4,

c = −11/2P1 + 9P2 − 9/2P3 + P4,

d = P1.

Substituting into Equation (I.19) gives

P(t) =(−9/2P1 + 27/2P2 − 27/2P3 + 9/2P4)t3

+ (9P1 − 45/2P2 + 18P3 − 9/2P4)t2

+ (−11/2P1 + 9P2 − 9/2P3 + P4)t + P1.

Which, after rearranging, becomes

P(t) =(−4.5t3 + 9t2 − 5.5t + 1)P1 + (13.5t3 − 22.5t2 + 9t)P2

+ (−13.5t3 + 18t2 − 4.5t)P3 + (4.5t3 − 4.5t2 + t)P4

=G1(t)P1 + G2(t)P2 + G3(t)P3 + G4(t)P4

=G(t) · P, (I.20)

where

G1(t) = (−4.5t3 + 9t2 − 5.5t + 1),

G3(t) = (−13.5t3 + 18t2 − 4.5t),

G2(t) = (13.5t3 − 22.5t2 + 9t),

G4(t) = (4.5t3 − 4.5t2 + t);
(I.21)

P is the column (P1,P2,P3,P4)T , and G(t) is the row vector

(
G1(t), G2(t), G3(t), G4(t)

)
.

The functions Gi(t) are called blending functions, since they create any point
on the curve as a blend of the four given points. Note that they add up to 1 for any
value of t. This property must be satisfied by any set of blending functions, and
such functions are called barycentric. We can also write

G1(t) = (t3, t2, t, 1)(−4.5, 9,−5.5, 1)T

I.10 Interpolating Polynomials 943

and, similarly, for G2(t), G3(t), and G4(t). In matrix notation this becomes

G(t) = (t3, t2, t, 1)




−4.5 13.5 −13.5 4.5
9.0 −22.5 18 −4.5
−5.5 9.0 −4.5 1.0
1.0 0 0 0


 = T(t) · N. (I.22)

The curve can now be written P(t) = G(t) · P = T(t) · N · P. N is called the
basis matrix and P is the geometry vector. From Equation (I.19) we know that
P(t) = T(t) · A, so we can write A = N · P. Equation (5.17) illustrates an
application of this interpolating polynomial for image compression.

The word barycentric is derived from barycenter, meaning “cen-
ter of gravity,” because such weights are used to calculate the cen-
ter of gravity of an object. Barycentric weights have many uses in
geometry in general, and in curve and surface design in particular.

Given the four points, the interpolating polynomial can be calculated in two
steps:

1. Set-up the equation A = N · P and solve it for A = (a,b, c,d)T .
2. The polynomial is P(t) = T(t) · A.

I.10.2 Example

(This example is in two dimensions, each of the four points Pi and each of the four
coefficients a, b, c, and d is a pair. For three-dimensional curves, the method is
the same, except that triplets should be used, instead of pairs.) Given the four
two-dimensional points P1 = (0, 0), P2 = (1, 0), P3 = (1, 1), and P4 = (0, 1), we
set up the equation




a
b
c
d


 = A = N · P =




−4.5 13.5 −13.5 4.5
9.0 −22.5 18 −4.5
−5.5 9.0 −4.5 1.0
1.0 0 0 0







(0, 0)
(1, 0)
(1, 1)
(0, 1)


 ,

which is easy to solve

a = −4.5(0, 0) + 13.5(1, 0) − 13.5(1, 1) + 4.5(0, 1) = (0,−9),
b = 19(0, 0) − 22.5(1, 0) + 18(1, 1) − 4.5(0, 1) = (−4.5, 13.5),
c = −5.5(0, 0) + 9(1, 0) − 4.5(1, 1) + 1(0, 1) = (4.5,−3.5),
d = 1(0, 0) − 0(1, 0) + 0(1, 1) − 0(0, 1) = (0, 0).

Thus P(t) = T · A = (0,−9)t3 + (−4.5, 13.5)t2 + (4.5,−3.5)t.

944 I. Introductory Mathematics

It is now easy to calculate and verify that P(0) = (0, 0) = P1, and

P(1/3) = (0,−9)1/27 + (−4.5, 13.5)1/9 + (4.5,−3.5)1/3 = (1, 0) = P2,

P(1) = (0,−9)13 + (−4.5, 13.5)12 + (4.5,−3.5)1 = (0, 1) = P4.

� Exercise I.15: Calculate P(2/3) and verify that it is equal to P3.

� Exercise I.16: Imagine the circular arc of radius one in the first quadrant (a quar-
ter circle). Write the coordinates of the four points that are equally spaced on this
arc. Use the coordinates to calculate a PC interpolating polynomial approximating
this arc. Calculate point P(1/2). How far does it deviate from the midpoint of the
true quarter circle?

The main advantage of this method is its simplicity. Given the four points, it
is easy to calculate the PC polynomial that passes through them.

� Exercise I.17: This method makes sense if the four points are (at least approxi-
mately) equally spaced along the curve. If they are not, the following may be done:
Instead of using 1/3 and 2/3 as the intermediate values, the user may specify values
α, β such that P2 = P(α) and P3 = P(β). Generalize Equation (I.22) such that it
depends on α and β.

I.10.3 Two-Dimensional Interpolation

The PC polynomial, Equation (I.19), can easily be extended to two dimensions by
means of a technique called Cartesian product. The polynomial is generalized from
a cubic curve to a bicubic surface.

A one-dimensional PC polynomial has the form P(t) =
∑3

i=0 ait
i. Two such

curves, P(u) and P(w), can be combined by means of this technique to form the
surface:

P(u, w) =
3∑

i=0

3∑
j=0

aiju
iwj

= a33u
3w3 + a32u

3w2 + a31u
3w + a30u

3 + a23u
2w3 + a22u

2w2 + a21u
2w + a20u

2

+ a13uw3 + a12uw2 + a11uw + a10u + a03w
3 + a02w

2 + a01w + a00

= (u3, u2, u, 1)




a33 a32 a31 a30

a23 a22 a21 a20

a13 a12 a11 a10

a03 a02 a01 a00







w3

w2

w
1


 , where 0 ≤ u, w ≤ 1. (I.23)

This is a double cubic polynomial (hence the name bicubic) with 16 terms,
where each of the 16 coefficients aij is a triplet. Note that the surface depends
on all 16 coefficients. Any change in any of them produces a different surface.
Equation (I.23) is the algebraic representation of a bicubic surface. In order to use
it in practice, the 16 unknown coefficients have to be expressed in terms of the 16

I.10 Interpolating Polynomials 945

known, equally-spaced points. We denote these points

P03 P13 P23 P33

P02 P12 P22 P32

P01 P11 P21 P31

P00 P10 P20 P30.

To calculate the 16 unknown coefficients, we write 16 equations, each based on one
of the given points:

P(0, 0) = P00 P(0, 1/3) = P01 P(0, 2/3) = P02 P(0, 1) = P03

P(1/3, 0) = P10 P(1/3, 1/3) = P11 P(1/3, 2/3) = P12 P(1/3, 1) = P13

P(2/3, 0) = P20 P(2/3, 1/3) = P21 P(2/3, 2/3) = P22 P(2/3, 1) = P23

P(1, 0) = P30 P(1, 1/3) = P31 P(1, 2/3) = P32 P(1, 1) = P33.

Solving, substituting the solutions in Equation (I.23), and simplifying produces the
geometric representation of the bicubic surface

P(u, w) = (u3, u2, u, 1)N




P33 P32 P31 P30

P23 P22 P21 P20

P13 P12 P11 P10

P03 P02 P01 P00


NT




w3

w2

w
1


 , (I.24)

where N is the Hermite matrix of Equation (I.22).
The surface of Equation (I.24) can now be used to predict the value of a pixel

as a polynomial interpolation of 16 of its near neighbors. All that is necessary is to
substitute u = 0.5 and w = 0.5. The following Mathematica code

Clear[Nh,P,U,W];
Nh={{-4.5,13.5,-13.5,4.5},{9,-22.5,18,-4.5},
{-5.5,9,-4.5,1},{1,0,0,0}};
P={{p33,p32,p31,p30},{p23,p22,p21,p20},
{p13,p12,p11,p10},{p03,p02,p01,p00}};
U={u^3,u^2,u,1};
W={w^3,w^2,w,1};
u:=0.5;
w:=0.5;
Expand[U.Nh.P.Transpose[Nh].Transpose[W]]

does that and produces

P(.5, .5)
= 0.00390625P00 − 0.0351563P01 − 0.0351563P02 + 0.00390625P03

− 0.0351563P10 + 0.316406P11 + 0.316406P12 − 0.0351563P13

− 0.0351563P20 + 0.316406P21 + 0.316406P22 − 0.0351563P23

+ 0.00390625P30 − 0.0351563P31 − 0.0351563P32 + 0.00390625P33,

where the 16 coefficients are the ones used in Table 4.118.

946 I. Introductory Mathematics

� Exercise I.18: How can this method be used in cases where not all 16 points are
known?

� Exercise I.19: The center point of the surface is calculated as a weighted sum of
the 16 equally-spaced data points. It makes sense to assign small weights to points
located away from the center, but our result assigns negative weights to eight of the
16 points. Explain the meaning of negative weights and show what role they play
in interpolating the center of the surface.

Readers who find it hard to follow the details above should compare the way
two-dimensional polynomial interpolation is presented here to the way it is discussed
by [Press et al. 88]. The following quotation is from page 125: “. . .The formulas
that obtain the c’s from the function and derivative values are just a complicated
linear transformation, with coefficients which, having been determined once, in the
mists of numerical history, can be tabulated and forgotten.”

Seated at his disorderly desk, caressed by a counterpane of drifting

tobacco haze, he would pore over the manuscript, crossing out,

interpolating, re-arguing, and then referring to volumes on his shelves.

Christopher Morley, The Haunted Bookshop

