
D
Data Structures

A computer program is a set of instructions (or statements) that specify operations
on data items. Sometimes, data items are independent and each is stored separately
in memory. In such a case, each item becomes a variable in the program and is given
a name. A set of data items may, however, be related, and such items should be
stored together in memory as a data structure. Examples are:

1. A data base with information about people. Each element of the data base
may consist of a name (first, middle, and last), an identifying number, an address,
and other data such as age, salary, or title. The name may be stored in an array.
The identification number becomes an integer variable, the address is stored in
another array, and so on. These arrays and variables are then grouped to become
one node in a linked list.

2. A matrix of numbers, such as the quantization matrices used in certain
image compression methods. Such numbers can be stored in a two-dimensional
array.

Arrays and lists are examples of data structures. Two things should be de-
scribed in a data structure, the way data items are related, and the operations that
the program should be able to perform on the structure and on the data items. Ex-
amples of operations are inserting/deleting an item, replacing an item, searching for
an item, and increasing/decreasing the size of the structure. Once the programmer
knows how the data items are related and what operations are needed, the data
structure can be designed. Data structures are sometimes simple, such as an array,
a stack, or a list, but they can get very complex, since one structure may combine
lists, stacks, hash tables, and arrays in a complex way.

The main data structure described in this chapter is the hash table, but we
start with a short survey of some basic data structures.

854 D. Data Structures

D.1 Arrays

The array is a common, useful, and important data structure. Intuitively, we can
think of an array as a set of consecutive memory locations grouped under one name,
where each individual location is accessed by its index. While this is a practical
description of arrays, it is not a good definition, since it defines this data structure
by means of its actual representation in memory. A more formal definition is

An array is a set of pairs (index, value).
This defines an array as a mapping from the set of indexes to the set of values.

In principle, the index can be any data type, but in practice it is normally an
integer. In the old FORTRAN programming language the first array element has
index 1. In the C language the first index is 0, and in Pascal the programmer can
specify the first array index. Most programming languages require the size of all
arrays to be static, i.e., the size of an array cannot be changed at run time.

A program may use many data items, and storing them in an array is conve-
nient, since the programmer has to memorize just one name, the name of the array,
for all these items. However, each item stored in an array has an index, and the
programmer either has to memorize the indexes, use an application where it is not
necessary to memorize each index, or search the array for any particular item.

An important feature of arrays is that they can have more than one dimension.
A two-dimensional array A[m, n] is a matrix. Similarly, a three-dimensional array
A[l, m, n] is a three-dimensional matrix. Alternatively, we can think of it as a one-
dimensional array of l elements, each a matrix of dimensions m×n.

Even though a two-dimensional array can be considered a matrix, it is physi-
cally stored in memory as a set of consecutive locations. The array can be stored
in memory row by row or column by column. Figure D.1 shows that in the former
case, an array item A[i, j] in an m×n array is stored in location (i − 1)n + j from
the start of the array (assuming that row and column indexes start at 1).

(i−1)n

start of row ifirst i−1 rows

element i,j

j

Figure D.1: Position of Array Element A[i, j].

� Exercise D.1: Assume that an array A of dimensions m×n is stored in memory
column by column and that row and column indexes start at 0. What is the distance,
in memory, of array element A[i, j] from the first array element A[0, 0]?

A simple example of the use of an array is storing the n + 1 coefficients of a
polynomial of degree n in an array of size n+2 or longer (see Equation (I.18) for the
definition of a polynomial). In this case the programmer implicitly knows what’s in
each array location.

D.2 Stacks and Queues 855

� Exercise D.2: Why should the array size be n + 2 and not n + 1?

D.2 Stacks and Queues

The stack is also a common data structure. Intuitively we think of a stack as
a container open at one end. The only operations on a stack are insertion and
deletion (commonly referred to as push and pop, respectively), and they are done
from the open end. Figure D.2a shows how three data items are pushed into an
empty stack and how the only item that can be popped out is the last that was
pushed in. This is why a stack is sometimes referred to as a LIFO (last-in first-out)
structure. The stack is normally implemented as an array, but because of the way
it is used, the program needs to keep track of only one item, the top one (i.e., the
last one in), at any given time. The program therefore maintains a pointer called
top of stack that points at that data item.

(a)

A A

B

A

B

A

B

C

(b)

A A A

B B B

C C C

D D D

Figure D.2: Stack and Queue.

A queue is a data structure where the only item that can be removed is the
oldest one. A queue is therefore based on the FIFO (first-in first-out) principle.
Figure D.2b shows a queue during four insertions and three deletions. It is obvious
that these operations move the data from the start to the end of the queue, which
is why the circular queue (discussed in Section 3.2.1) is a more useful data structure
than the linear queue.

D.3 Lists

A list (or a linked list) is a data structure made of nodes that point to each other. A
node may be a single variable, an array, a stack, another list, or any other structure,
but the main feature of lists is the use of pointers. This makes it easy to control
the size of the list dynamically. A programming language may include statements
such as get_node (to construct a new node from the pool of available storage) and
put_node (to return the storage used by a node to that pool). Figure D.3 shows
several ways to organize lists. A list can be singly-linked or doubly-linked, it can
be cyclical, and the list elements may themselves be lists.

A queue may be implemented as a linked list. Inserting a new item is done by
creating a new node and adding it to the list. Deleting an item is done by deleting
the first (oldest) node.

856 D. Data Structures

Figure D.3: Linked Lists.

D.4 Trees

A tree can be loosely defined as a data structure consisting of nodes connected with
directed edges, where all the nodes are connected, there are no cycles, and one node
is considered special. This node is called the root of the tree. Figure D.4a shows
such a structure where any of the nodes can be considered the root. Notice the
dashed edge. Including this edge in the structure would introduce a cycle, and thus
change it from a tree to a general graph. Figure D.4b shows the same structure
with node a chosen as the root and the remaining nodes rearranged to form the
familiar shape of a tree. If there are edges leading directly from a node a to nodes
b, c, and d, then the three nodes are called the children of a and a is their parent.
If a node does not have any children, it is a leaf. A node that is neither a leaf nor
the root is an interior node. The depth (or level) of a node is the length of the path
from the root to the node. The root itself has depth zero. The height of a tree is
the largest depth (or, alternatively, one less than the number of levels of the tree).
Figure D.4b shows that each node in a tree is the root of a subtree (which may be
empty).

In a typical practical implementation, a node a is a short array containing a
data item and pointers. In most cases the array contains 1, 2, or 3 pointers, each
pointing to the start of a linked list. The first pointer may point to a list containing
nodes that are siblings of a (notice that the root does not have any siblings). The
second pointer may point to a list containing nodes that are children of a (if a is a
leaf, this pointer is null), and the third pointer may point to the parent of a (a null
pointer, if a is the root). This way it is possible to travel in the tree to the right
(from a to its next sibling on the right), down (from a to its first child), and up
(from a to its parent). Such a tree may also change dynamically, with nodes being
added, deleted, and modified.

Sometimes, it is useful to add another component (or field) to the array, with
a code marking the node as either existing or deleted. This way a node can be

D.4 Trees 857

(a)

(c) (d)

(e)

(b)

a

a

a

b c
d e f

g h

(f)

a

b c
d e f

g h

Figure D.4: Various Trees.

effectively deleted from the tree by setting this field to “deleted,” without having
to actually delete it and change pointers. This technique is called “lazy deletion”
and is useful in applications where there is no need to return deleted nodes to the
pool of available storage.

If a node can have just a few children, it may be possible to implement the entire
tree in an array, without any pointers. The simplest example is a complete binary
tree, where the two children of node a are stored in locations 2a and 2a+1 and the
parent of a can be found at array location �a/2� (this is discussed in Section 2.15).

� Exercise D.3: Can a ternary tree be implemented in this way?

A binary tree can be complete, skewed, or anything in between. This is illus-
trated by Figure D.4c,d,e.

An important operation on a tree is a traversal. A traversal follows pointers in
such a way that each node of the tree is visited once. There are four types of tree
traversals:

Post-order. All the children of a node are visited, then the node itself is visited.
This is done recursively by the two recursive calls postorder(L); postorder(R);
(where L and R are the two children of the root), followed by visit(root). The
post-order traversal of the tree of Figure D.4e is (((D, E), B), (((G, H), F), C)), A.

Pre-order: Visit a node, then all its children.

858 D. Data Structures

In-order: This is for binary tree traversal. Visit the left subtree of a node, then
the node, then its right subtree.

Level-order: Visit all the nodes of level L, then proceed to level L + 1.

� Exercise D.4: Show the pre-order, in-order, and level-order traversals of the tree
of Figure D.4e.

A tree traversal is normally done recursively, except that level-order traversal
uses a queue instead of a stack.

In a simple implementation, each node of a binary tree has two pointers, for its
left and right children. It is obvious that not all the pointers are used. For example,
in the binary tree of Figure D.4e there are 9 unused pointers (8 in the leaves and
one in node C). Such unused pointer fields can be used for extra pointers called
threads. One way to define threads is to find a node A with an unused field of a right
child, and to store in this field a pointer to the successor of A in inorder traversal.
The resulting three threads of the tree of Figure D.4e are shown in Figure D.4f.
Obviously, threads can be defined differently and can be very useful in special
applications, where the tree has to be traversed or searched in nonstandard ways.
The price of adding the threads is an extra bit (a flag) in each node A, indicating
whether an ordinary pointer to the right child, or a thread is stored in A.

Imagine an interior node a in a binary tree. It has two children, l and r, that
are the roots of the left and right subtrees of a, respectively. If l has the largest
data value in its subtree, and r satisfies the same thing for its subtree, then the
binary tree is called a heap.

A binary search tree is an important type of tree. In such a tree all nodes in
the left subtree of node a have data values that are smaller than the data value of
a. Similarly, all the nodes in the right subtree of a have data values larger than a.
If the data are not numbers, the relations “less than” and “greater than” have to
defined. Binary search trees are described and used in Section 3.3. The main use
of such a tree is quick search. Searching for a node in a binary search tree takes at
most H steps, where H is the height of the tree.

Imagine a binary search tree that starts empty. When nodes are inserted into
the tree, it grows. The order in which the nodes are inserted determines the shape of
the tree. If the nodes being inserted have random data values, the resulting tree will
be balanced, i.e., very similar to a complete tree. Its height will be approximately
log2 n where n is the number of nodes. Searching such a binary search tree with
a million nodes takes at most 20 steps. If, on the other hand, the new nodes
have monotonous data values (ascending or descending), the tree will end up being
skewed. Its height (and thus the maximum search time) will be n.

Binary search trees are commonly used in applications that require many
searches, so it is desirable to find a way to keep such a tree as close to balanced as
possible, regardless of the order of node insertions. The AVL tree (named for its
two developers, Adelson-Velskii and Landis) is such a data structure. Each node
in an AVL tree has a balance factor, defined as the height of its left subtree minus
the height of its right subtree. This balance factor is allowed to take only the three
values 0, 1, and −1, i.e., the heights of the two subtrees of any node may differ by
at most 1.

D.4 Trees 859

When the balance factor of a node becomes greater than 1, we say that the
node is “out of balance on the left;” when it becomes less than −1, we say it is
“out of balance on the right.” These situations are immediately corrected, and the
node brought back into balance. An AVL tree is a special case of a height-balanced
binary tree, a structure defined by:

1. An empty binary tree is height balanced.
2. A nonempty binary tree is height balanced if its left and right subtrees are

height balanced with balance factors of 0, 1, or −1.
An AVL tree is a height-balanced binary search tree, a special case of a height-

balanced binary tree. Figure D.5a shows an example of an AVL tree that illustrates
one important attribute of these trees, namely they don’t have to be complete. The
leaves of an AVL tree don’t have to be on the same level or even on adjacent levels.
However, it can be shown that an AVL tree is not very different from a complete
binary tree because its height can be at most

√
2 log2 n. An AVL tree is created

either empty of with 1 node, so initially it is height-balanced. It is kept height-
balanced after each insertion and deletion by special adjustments (called rotations)
that restore the balance. The details can be found in texts on data structures.

o
(20, 30)

(8, 10, 15) (24, 27)

(31, 33) (40, 44) (51, 53, 60, 74)

(35, 49)j u
f m

n

x
v y

r

s
z

(a) (b)

Figure D.5: (a) An AVL Tree. (b) A B-Tree.

The last type of tree to be mentioned here is the B-tree. This is an important
type of tree because it is used by many operating systems to maintain the file
directory of a disk. The growth of a B-tree is especially controlled to keep it well-
balanced, leading to fast searches, but a B-tree, in spite of its name, is not a binary
tree.

A node in a B-tree can have several children, and it is this property, together
with the tree being well-balanced, that makes it a natural candidate for a disk
directory. The following extreme example shows why. Imagine a tree where each
node can have 100 children. If the tree has a height of 4, it can contain up to

1 + 100 + 1002 + 1003 = 1, 010, 101

nodes. One node among more than a million can be found in at most four steps!
The price for this is, of course, a complex node structure, allowing for up to 100
children. In a disk directory each node is kept on the disk as a block. The size of
a disk block varies, but is typically a few hundred bytes. Therefore, a block has

860 D. Data Structures

room for much information in the form of keys, pointers, and flags. At the same
time, a disk access is much slower than memory access, so finding an item in the
directory should involve as few disk accesses as possible. Once the disk is accessed,
an entire block is read into memory. In memory, the block can be searched and its
data processed quickly.

A node in a B-tree contains a count field, a pointer to a list of entries (records
to be searched, where each record has a key and possibly some other data), and a
pointer to a list of branches. The lists of entries and branches must be ordered, but
they can be any ordered structures, such as linked lists, arrays, or binary search
trees. The count field m contains the number of entries (m) and the number of
branches (m + 1).

Figure D.5b shows a simple B-tree. Only the list of entries is shown, and for
each entry only the key is shown. This is enough to understand how the tree is
searched. The root contains keys 20 and 30. This means that branch 0 from the
root leads to an entry list for all entries with keys that are less than 20. Branch 1
from the root leads to an entry list for all entries with keys in the range [20, 30) and
branch 2 leads to the list for entries with keys ≥ 30. To search for 34, for example,
we start at the root, take branch 2 (since 33 ≥ 30), then branch 0 (since 33 < 35).
We arrive at the node with entry list (31, 33) and take branch 2 (since 33 ≥ 35).
This brings us to a null node, which is how we discover that key 34 is not in the
tree.

D.5 Graphs

A graph is a general data structure consisting of nodes (or vertices) and edges (or
arcs) connecting them. The graph is a general structure because not all nodes have
to be connected and no node has to be special (such as the head or root of the
graph). Figure D.6 shows examples of graphs. A graph may even consist of several,
disconnected units. Edges may be directed or undirected, and may have labels
(indicating weights or costs) associated with them. The main operations on graphs
are the following:

1. Construct an empty graph g.
2. Insert a node a into an existing graph g.
3. Construct an edge e between nodes a and b of graph g.
4. Delete a node a from g. All the edges adjacent to the node should also be

deleted.
5. Delete edge e between nodes a and b of graph g.
6. Determine whether graph g is empty.
7. Construct a list of all edges adjacent to node a of g.
8. Traverse graph g (i.e., visit each node once).
9. Find the minimum-cost path that leads from node a to node b in g.

There may be other, specialized operations for specific applications.
In an undirected graph, an edge between a and b is adjacent to both nodes. In

a directed graph, an edge from a to b is said to be “adjacent from a” and “adjacent
to b.”

D.6 Hashing 861

(c)

a a

(d)

7

2

38

86

121

3
49

212
12

90

11

(a)

a

(b)

a

Figure D.6: Various Graphs.

D.6 Hashing

A hash table is a data structure allowing for fast insertions, searches, and deletions
of data items. The table itself is just an array H, and the principle of hashing is to
define a function h such that h(k) produces an index to array H, where k is the key
of a data item. The following examples illustrate the meaning of the terms “data
item” and “key.”

1. The LZRW1 method (Section 3.8), uses hashing to store pointers. The
method uses the first three characters in the look-ahead buffer as a key which is
hashed into a 12-bit number I used to index the hash table, an array of 212 = 4, 096
pointers. The actual data stored in each location of the LZRW1 hash table is a
pointer.

2. Virtually all computer languages use variables. A variable provides a name
for a value that will be stored in memory, in a certain address A, when the pro-
gram is eventually executed. When the program is compiled, each variable has two
attributes, its name N (a string of characters assigned by the programmer) and
its memory address A, assigned by the compiler. The compiler uses a hash table
to store all the information about variables. The data item in this example is the
address A of a variable; the key is the variable’s name N . The compiler reads the
name from the program source file, hashes it, finds it in the hash table, and retrieves
the address in order to compile the current instruction. If the variable is not found

862 D. Data Structures

in the hash table, it is assigned an address, and both the name and address are
stored in the table (in principle, only the address need be stored, but the name is
also stored because of collisions; see below).

The hash function h takes as argument a key, which may be a number or a
string. It scrambles or hashes the bits of the key to produce an index to array
H. In practice the array size is normally 2n, so the result produced by h should
be an n-bit number. Hashing is a good data structure, since any operation on the
hash table, adding, searching, or deleting, can be done in one step, regardless of
the table size. The only problem is collisions. In most applications it is possible
for two distinct keys k1 and k2 to get hashed to the same index, i.e., h(k1) = h(k2)
for k1 �= k2. Example 2 above makes it easy to understand the reason for this.
Assuming variable names of five letters, there may be 265 = 11, 881, 376 variable
names. Any program would use just a small percentage of this number, perhaps
a few hundred or a few thousand names. The size of the hash table thus doesn’t
have to exceed a few thousand entries, and hashing 11.8 million names into a few
thousand index values must involve many collisions.

� Exercise D.5: How many names are possible if a name consists of exactly eight
letters and digits?

Terminology: Two different keys that hash to the same index are called
synonyms. If a hash table contains m keys out of a set of M possible ones, then
m/M is the density of the table, and α = m/2n is its loading factor.

D.7 Hash Functions

A hash function should be easy to compute and should minimize collisions. The
function should make use of all the bits of the key, such that changing even one
bit would normally (although not always) produce a different index. An ideal hash
function should also produce indexes that are uniformly distributed (calling the
function many times with random keys should produce each index the same number
of times). A function that produces, e.g., index 118 most of the time is obviously
biased and leads to collisions. The function should also assume that many keys
may be similar. In the case of variable names, e.g., programmers sometimes assign
names such as “A1”, “A2”, “A3” to variables. A hash function that uses just the
leftmost bits of a key would produce the same index for such names, leading to
many collisions. Following are some examples of hash functions used in practice.

Mid-Square: The key k is considered an integer, it is squared and the middle
n bits of k2 extracted to become the index. Squaring k has the advantage that the
middle bits of k2 depend on all the bits of k. Thus two keys differing in one bit
would tend to produce different indexes. A variation, suitable for large keys, is to
divide the bits of the original key into several groups, add all the groups, square
the result, and extract its middle n bits.

The keys “A1”, “A2”, and “A3”, e.g., become the 16-bit numbers

01000001|00110001, 01000001|00110010, and 01000001|00110011.

After squaring and extracting the middle 8 bits, the resulting indexes are 158, 166,
and 175, respectively.

D.8 Collision Handling 863

Modulo: h(k) = k mod m. The result is the remainder of the integer division
k/m, a number in the range [0, m − 1]. In order for the result to be a valid index,
the hash table size should be m. The value of m is critical and should be selected
carefully. If m is a power of 2, say, 2i, then the remainder of k/m is simply the i
rightmost bits of k. This would be a very biased hash function. If m is even, then
the remainder of k/m has the same parity as k (it is odd when k is odd and even
when k is even). This again is a bad choice for m, since it produces a biased hash
function that maps odd keys to odd location of H and even keys to even locations.
If p is a prime number evenly dividing m then keys that are permutations of each
other (e.g., “ABC”, “ACB”, and “CBA”) may often be mapped to indexes that differ
by p or by a multiple of p, again causing non-uniform distribution of the keys.

It can be shown that the modulo hash function achieves best results when m is
a prime number that does not evenly divide 8a±b where a and b are small numbers.
In practice, good choices for m are prime numbers whose prime divisors are > 20.

Folding: This function is suitable for large keys. The bits constituting the
key are divided into several groups, which are then added. The middle n bits of the
sum are extracted to become the index. A variation is reverse folding where every
other group of bits is reversed before being added.

No, no. Look, here’s the hash on the side because I didn’t know
how much you took.

—Amy Wright as Shelley in Stardust Memories (1980).

D.8 Collision Handling

When an index i is produced by the hash function h(k), the software using hashing
should first check H[i] for a collision. There must, therefore, be a way for the
software to tell whether entry H[i] is empty or occupied. Initializing all entries of
H to zero is normally not enough, since zero may be a valid data item. A simple
approach is to have an additional array F , of size 2n/8 bytes, where each bit is
associated with an entry of H. Each bit of F acts as a flag indicating whether
the corresponding entry of H is empty or not. The entire array F is initially set
to zeros, indicating that all entries of H are empty. When the software decides to
insert a data item in H[i] it has to find the bit in F that corresponds to entry i and
check it. The software should therefore calculate j = �i/8�, k = i − 8j, and check
bit k of byte F[j]. If the bit is zero, entry H[i] is empty and can be used for a new
data item. The bit then has to be set, which is done by using k to select one of the
eight masks
00000001 00000010 00000100 00001000 00010000 00100000 01000000 10000000

and logically OR it with F [j]. If the bit is 1, entry H[i] is already occupied, and
this is a collision. The software should be able to check and tell whether entry H[i]
contains the data item d that corresponds to key k. This is why the keys have to
be saved, together with the data items, in the hash table.

What should the software do in case of a collision? The simplest thing is to
check entries H[i + 1], H[i + 2],. . . , H[2n − 1], H[0], H[1]. . .until an empty entry is
found or until the search reaches entry H[i−1]. In the latter case the software knows

864 D. Data Structures

that the data item is not in the table (if this was a search for an item) or that the
table is full (if this was an attempt to insert a new item in the table). This process
is called linear search. Searching for a data item, which in principle should take one
step, can now, because of collisions, take up to 2n steps. Experience also shows that
a linear search causes occupied entries in the table to cluster, which is intuitively
easy to understand. If the hash function is not ideal and hashes many keys to, say,
index 54, then table entries 54, 55,. . .will quickly fill up, creating a cluster. Clusters
also tend to grow and merge, creating even larger clusters and thereby increasing
the search time. A theoretical analysis shows that the expected number of steps
needed to locate an item when linear search is used is (2− α)/(2− 2α), where α is
the loading factor (percent full of the table). For α = 0.5 we can expect 1.5 steps
on the average, but for α = 0.75 the expected number of steps rises to 2.5, and for
α = 0.9 it become 5.5. It is clear that when linear search is used, the loading factor
should be kept low (perhaps below 0.6–0.7). If more items need to be added to the
table, a good solution is to declare a new table, twice as large as the original one,
transfer all items from the old table to the new one (using a new hash function),
and delete the old table.

Dinner was at one o’clock; and on Monday, Tuesday, and
Wednesday it consisted of beef, roast, hashed, and minced, and
on Thursday, Friday, and Saturday of mutton. On Sunday they
ate one of their own chickens.

—W. Somerset Maugham, Of Human Bondage

A more sophisticated method of handling collisions is quadratic search. Assume
that H is an array of size N . When entry H[i] is found to be occupied, the software
checks entries H[(i ± j2) mod N] where 0 ≤ j ≤ (N − 1)/2. It can be shown that
if N is a prime number of the form 4j + 3 (where j is an integer) quadratic search
will end up examining every entry of H.

A third way to treat collisions is to rehash. The software should have a choice of
several hashing functions h1, h2, If i = h1(k) and H[i] is occupied, the software
should calculate i = h2(k) then try the new H[i]. Still another way is to generate
an array R of N pseudo-random numbers in the range [0, N −1] where each number
appears once. If entry H[i] is occupied, the software should set i = (i+R[i]) mod N
and try the new H[i].

It is possible to design a perfect hash function that, for a given set of data
items, will not have any collisions. This makes sense for sets of data that never
change. Examples are the Bible, the works of Shakespeare, or any data written
on a CD-ROM. The size N of the hash table should, in such a case, be normally
larger than the number of data items. It is also possible to design a minimal perfect
hash function where the hash table size equals the size of the data (i.e., no entries
remain empty after all data items have been inserted). See [Czech 92], [Fox 91],
and [Havas 93] for details on these special hash functions.

D.8 Collision Handling 865

Bibliography

Czech, Z. J., et al. (1992) “An Optimal Algorithm for Generating Minimal Perfect Hash
Functions,” Information Processing Letters 43:257–264.

Fox, E. A. et al. (1991) “Order Preserving Minimal Perfect Hash Functions and Information
Retrieval,” ACM Transactions on Information Systems 9(2):281–308.

Havas, G. et al. (1993) Graphs, Hypergraphs and Hashing in Proceedings of the Inter-
national Workshop on Graph-Theoretic Concepts in Computer Science (WG’93), Berlin,
Springer-Verlag.

“Why,” said he, “a magician could call up a lot of genies, and

they would hash you up like nothing before you could say Jack

Robinson. They are as tall as a tree and as big around as a church.”

Mark Twain, The Adventures Of Huckleberry Finn

