
C
Curves That
Fill Space

A space-filling curve completely fills up part of space by passing through every
point in that part. It does that by changing direction repeatedly. We will only
discuss curves that fill up part of the two-dimensional plane, but the concept of a
space-filling curve exists for any number of dimensions.

� Exercise C.1: Show an example of a space-filling curve in one dimension.

Several such curves are known and all are defined recursively. A typical def-
inition starts with a simple curve C0, shows how to use it to construct another,
more complex curve C1, and defines the final, space-filling curve as the limit of the
sequence of curves C0, C1, . . . .

C.1 The Hilbert Curve

(This discussion is based on the approach of [Wirth 76].) Perhaps the most fa-
miliar of these curves is the Hilbert curve, discovered by the great mathematician
David Hilbert in 1891. The Hilbert curve [Hilbert 91] is the limit of a sequence
H0, H1, H2 . . . of curves, some of which are shown in Figure C.1. They are defined
by the following:

0. H0 is a single point.
1. H1 consists of four copies of (the point) H0, connected with three straight

segments of length h at right angles to each other. Four orientations of this curve,
labeled 1, 2, 3, and 4, are shown in Figure C.1a.

2. The next curve, H2, in the sequence is constructed by connecting four copies
of different orientations of H1 with three straight segments of length h/2 (shown in
bold in Figure C.1b). Again there are four possible orientations of H2, and the one
shown is #2. It is constructed of orientations 1223 of H1, connected by segments
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Figure C.1: Hilbert Curves of Orders 1, 2, and 3.

that go to the right, up, and to the left. The construction of the four orientations
of H2 is summarized in Table C.2.

Drawing this curve is thus done recursively. A procedure to draw orientation
#4 of Hi is shown in Figure C.3. It makes four recursive calls to draw the four
curves of order i − 1, and draws straight segments between the calls, to connect
them (the names A, B, C, and D are used instead of 1, 2, 3, and 4).

Figure C.4 is a complete Pascal program for Hn, compiled by the MetrowerksTM

Macintosh Pascal compiler. Notice how the main program determines the initial
values of the starting point (x, y) of the curve, and the segment size h. Variable
h0 defines the size, in pixels, of the square containing the curve, and should be a
power of 2.

Curve H3 is shown in Figure C.1c. The particular curve shown is orientation
1223 of H2.

Figures C.5, C.6 and C.7 show the Hilbert curves of orders 4, 5 and 6. It is
easy to see how fast these curves become extremely complex.

C.2 The Sierpiński Curve

Another well-known space-filling curve is the Sierpiński curve. Figure C.8 shows
curves S1 and S2, and Sierpiński has proved [Sierpiński 12] that the limit of the
sequence S1, S2, . . . is a curve that passes through every point of the unit square
[0, 1] × [0, 1].

To construct this curve, we need to figure out how S2 is constructed out of four
copies of S1. The first thing that comes to mind is to follow the construction method
used for the Hilbert curve, i.e., to take four copies of S1, eliminate one edge in each,
and connect them. This, unfortunately, does not work, since the Sierpiński curve is
very different from the Hilbert curve. It is closed, and it has one orientation only.
A better approach is to start with four parts that constitute four orientations of
one open curve, and connect them with straight segments. The segments are shown
dashed in Figure C.8. Notice how Figure C.8a is constructed of four orientations of
a basic, three-part curve connected by four short, dashed segments. Figure C.8b is
similarly constructed of four orientations of a complex, 15-part curve, connected by
the same short, dashed segments. If we denote the four basic curves A, B, C, and
D, then the basic construction rule of the Sierpiński curve is S: A↘B↙C↖D↗,
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1: 2 ↑ 1 → 1 ↓ 4
2: 1 → 2 ↑ 2 ← 3
3: 4 ↓ 3 ← 3 ↑ 2
4: 3 ← 4 ↓ 4 → 1

Table C.2: The Four Orientations of H2.

PROCEDURE D(i: INTEGER);
BEGIN
IF i>0 THEN BEGIN
A(i-1); x:=x-h; MoveTo(x,y);
D(i-1); y:=y-h; MoveTo(x,y);
D(i-1); x:=x+h; MoveTo(x,y);
C(i-1);
END;

END (*A*);

Figure C.3: A Recursive Procedure.

PROGRAM Hilbert; (* A Hilbert curve *)
USES ScreenIO, Graphics;

CONST LB = 5; Width = 630; Height = 430;
(* LB=left bottom corner of window *)
n=6; (* n is the order of the curve*)
h0=8; (* h0 should be a power of 2 *)

VAR h,x,y,x0,y0: INTEGER;

PROCEDURE B (i: INTEGER); FORWARD;
PROCEDURE C (i: INTEGER); FORWARD;
PROCEDURE D (i: INTEGER); FORWARD;

PROCEDURE A(i: INTEGER);
BEGIN
IF i>0 THEN BEGIN

D(i-1); x:=x-h; MoveTo(x,y);
A(i-1); y:=y-h; MoveTo(x,y);
A(i-1); x:=x+h; MoveTo(x,y);
B(i-1);
END;

END (*A*);

PROCEDURE B(i: INTEGER);
BEGIN
IF i>0 THEN BEGIN

C(i-1); y:=y+h; MoveTo(x,y);
B(i-1); x:=x+h; MoveTo(x,y);
B(i-1); y:=y-h; MoveTo(x,y);
A(i-1);
END;

END (*B*);

PROCEDURE C(i: INTEGER);
BEGIN
IF i>0 THEN BEGIN

B(i-1); x:=x+h; MoveTo(x,y);
C(i-1); y:=y+h; MoveTo(x,y);
C(i-1); x:=x-h; MoveTo(x,y);
D(i-1);
END;

END (*C*);

PROCEDURE D(i: INTEGER);
BEGIN
IF i>0 THEN BEGIN

A(i-1); y:=y-h; MoveTo(x,y);
D(i-1); x:=x-h; MoveTo(x,y);
D(i-1); y:=y+h; MoveTo(x,y);
C(i-1);
END;

END (*D*);

BEGIN (* Main *)
OpenGraphicWindow
(LB,LB,Width,Height,’Hilbert curve’);

SetMode(paint);
h:=h0; x0:=h DIV 2; y0:=x0; h:=h DIV 2;
x0:=x0+(h DIV 2); y0:=y0+(h DIV 2);
x:=x0+400; y:=y0+350; SetPen(x,y);
A(n);

ScBOL;
ScWriteStr
(’Hit a key & close window to quit’);

ScFreeze;
END.

Figure C.4: Pascal Program for a Hilbert Curve of Order i.
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Figure C.5: Hilbert Curve of Order 4.

Figure C.6: Hilbert Curve of Order 5.
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Figure C.7: Hilbert Curve of Order 6.

(a) (b)

Figure C.8: Sierpiński Curves of Orders 1 and 2.
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and the recursion rules are:

A: A↘B→→D↗A
B: B↙C ↓ ↓ A ↘B
C: C↖D←←B↙C
D: D↗A ↑ ↑ C ↖D (C.1)

Figure C.9 shows the five Sierpiński curves of orders 1 through 5 superimposed
on each other. They were drawn by the Pascal program of Figure C.10.

Figure C.9: Sierpiński Curves of Orders 1–5.



C.2 The Sierpiński Curve 847

program Sierpinski;

USES ScreenIO, QuickDraw;

PROCEDURE SierpinskiP(size,number:word);
(* Adapted from Wirth, 2nd ed, p.115 *)

VAR
H, x, y: INTEGER;

PROCEDURE B (level: word); FORWARD;
PROCEDURE C (level: word); FORWARD;
PROCEDURE D (level: word); FORWARD;

PROCEDURE A (level: word);
BEGIN
IF level > 0 THEN
BEGIN
A(level-1); Line(H,-H);
IF ScTellInput()>0 THEN BEGIN END;
B(level-1); Line(2*H,0);
IF ScTellInput()>0 THEN BEGIN END;
D(level-1); Line(H,H);
IF ScTellInput()>0 THEN BEGIN END;
A(level-1)
END
END {A};

PROCEDURE B (level: word);
BEGIN
IF level > 0 THEN
BEGIN
B(level-1); Line(-H,-H);
IF ScTellInput()>0 THEN BEGIN END;
C(level-1); Line(0,-2*H);
IF ScTellInput()>0 THEN BEGIN END;
A(level-1); Line(H,-H);
IF ScTellInput()>0 THEN BEGIN END;
B(level-1)
END
END {B};

PROCEDURE C (level: word);
BEGIN
IF level > 0 THEN
BEGIN
C(level-1); Line(-H,H);
IF ScTellInput()>0 THEN BEGIN END;
D(level-1); Line(-2*H,0);
IF ScTellInput()>0 THEN BEGIN END;
B(level-1); Line(-H,-H);
IF ScTellInput()>0 THEN BEGIN END;
C(level-1)
END
END {C};

PROCEDURE D (level: word);
BEGIN
IF level > 0 THEN
BEGIN
D(level-1); Line(H,H);
IF ScTellInput()>0 THEN BEGIN END;
A(level-1); Line(0,2*H);
IF ScTellInput()>0 THEN BEGIN END;
C(level-1); Line(-H,H);
IF ScTellInput()>0 THEN BEGIN END;
D(level-1)
END
END {D};

VAR
level: WORD;
BEXIT : BOOLEAN;

BEGIN (* SierpinskiP *)

level := 0;
H := size DIV 4;
x := 2 * H;
y := 3 * H;

BEXIT := FALSE;
REPEAT
level := level + 1;; x := x - H;;
H := H DIV 2; y := y + H;;
MoveTo (x, y);
A (level); Line (H, -H);
IF ScTellInput()>0 THEN BEXIT:=TRUE;
B (level); Line (-H, -H);
IF ScTellInput()>0 THEN BEXIT:=TRUE;
C (level); Line (-H, H);
IF ScTellInput()>0 THEN BEXIT:=TRUE;
D (level); Line (H, H);
IF ScTellInput()>0 THEN BEXIT:=TRUE;
IF level = number THEN BEXIT:=TRUE;
UNTIL BEXIT;

END {SierpinskiP};

VAR
ch: CHAR;
prop: termProp;

BEGIN
ScOpenWindow( 10, 10, 400, 400 );
ScGetProp (prop);
prop. showCurs := FALSE;
ScSetProp(prop); (*Hide alpha cursor*)
ScClear;
SierpinskiP(400,1);ScBeep (1);ScFreeze;
SierpinskiP(400,2);ScBeep (1);ScFreeze;
SierpinskiP(400,3);ScBeep (1);ScFreeze;
SierpinskiP(400,4);ScBeep (1);ScFreeze;
SierpinskiP(400,5);ScBeep (1);ScFreeze;
ScClose;
END {Sierpinski}.

Figure C.10: A Pascal Program for Sierpiński Curves of Orders 1–5.
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� Exercise C.2: Figure I.6 shows three iterations of the Peano space-filling curve, de-
veloped in 1890. Use the techniques developed earlier for the Hilbert and Sierpiński
curves, to describe how the Peano curve is constructed. (Hint: The curves shown
are P1, P2, and P3. The first curve, P0 in this sequence is not shown.)

C.3 Traversing the Hilbert Curve

Space-filling curves are used in image compression (Section 4.29), which is why it is
important to develop methods for a fast traversal of such a curve. Two approaches,
both table-driven, are illustrated here for traversing the Hilbert curve.

The first approach [Cole 86] is based on the observation that the Hilbert curve
Hi is constructed of four copies of its predecessor Hi−1 placed at different orienta-
tions. A look at Figures C.1, C.5, C.6, and C.7 should convince the reader that Hi

consists of 22i nodes connected with straight segments. The node numbers thus go
from 0 to 22i − 1 and require 2i bits each. In order to traverse the curve we need a
function that will compute the coordinates (x, y) of a node i from the node number
i. The (x, y) coordinates of a node in Hi are i-bit numbers.

A look at Figure C.5 shows how successive nodes are initially located at the
bottom left quadrant, and then move to the bottom right quadrant, the top right
quadrant, and finally the top left one. This figure shows orientation #2 of the
curve, so we can say that this orientation of Hi traverses quadrants 0, 1, 2, and 3,
where quadrants are numbered

(
3 2
0 1

)
. It is now clear that the two leftmost bits of

a node number determine its quadrant. Similarly, the next pair of bits in the node
number determine its subquadrant within the quadrant, but here we run into the
added complication that each subquadrant is placed at a different orientation in its
quadrant. This approach thus uses Table C.11 to determine the coordinates of a
node from its number.

Bit Next Bit Next Bit Next Bit Next
pair x y table pair x y table pair x y table pair x y table
00 0 0 2 00 0 0 1 00 1 1 4 00 1 1 3
01 1 0 1 01 0 1 2 01 0 1 3 01 1 0 4
10 1 1 1 10 1 1 2 10 0 0 3 10 0 0 4
11 0 1 4 11 1 0 3 11 1 0 2 11 0 1 1

(1) (2) (3) (4)

Table C.11: Coordinates of nodes in Hi.

As an example, we compute the xy coordinates of node 109 (the 110th node)
of orientation #2 of H4. The H4 curve has 22·4 = 256 nodes, so node numbers are
8 bits each, and 109 = 011011012. We start with Table C.11(1). The 2 leftmost
bits of the node number are 01, and table (1) tells us that the x coordinate start
with 1, the y coordinate, with 0, and we should continue with table (1). The next
pair of bits is 10, and table (1) tells us that the next bit of x is 1, the next bit of
y is 1, and we should stay with table (1). The third pair of bits is 11, so table (1)
tells us that the next bit of x is 0, the next bit of y is 1, and we should move to
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table (4). The last pair of bits is 01, and table (4) tells us to append 1 and 0 to
the coordinates of x and y, respectively. The coordinates are thus x = 1101 = 13,
y = 0110 = 6, as can be verified directly from Figure C.5 (the small circle).

It is also possible to transform a pair of coordinates (x, y), each in the range
[0, 2i − 1], to a node number in Hi by means of Table C.12.

xy Int. Next xy Int. Next xy Int. Next xy Int. Next
pair pair table pair pair table pair pair table pair pair table
00 00 2 00 00 1 00 10 3 00 10 4
01 11 4 01 01 2 01 01 3 01 11 1
10 01 1 10 11 3 10 11 2 10 01 4
11 10 1 11 10 2 11 00 4 11 00 3

(1) (2) (3) (4)

Table C.12: Node Numbers in Hi.

� Exercise C.3: Use Table C.12 to compute the node number of the H4 node whose
coordinates are (13, 6).

The second approach to Hilbert curve traversal uses Table C.2. Orientation
#2 of the H2 curve shown in Figure C.1(b) is traversed in order 1223. The same
orientation of the H3 curve of Figure C.1(c) is traversed in 2114 1223 1223 4332,
but Table C.2 tells us that 2114 is the traversal order for orientation #1 of H2,
1223 is the traversal for orientation #2 of H2, and 4332 is for orientation #3. The
traversal of orientation #2 of H3 is thus also based on the sequence 1223. Similarly,
orientation #2 of H4 is traversed (Figure C.5) in the order

1223 2114 2114 3441 2114 1223 1223 4332
2114 1223 1223 4332 3441 4332 4332 1223,

which is reduced to 2114 1223 1223 4332, which in turn is reduced to the same
sequence 1223.

The idea is therefore to create the traversal order for orientation #2 of Hi

by starting with the sequence 1223 and recursively expanding it i − 1 times, using
Table C.2.

� Exercise C.4: (Easy.) Show how to apply this method to traversing orientation
#1 of Hi.

A MATLAB function hilbert.m to compute the traversal of the curve is avail-
able at [Matlab 99]. It has been written by Daniel Leo Lau (lau@ece.udel.edu).
The call hilbert(4) produces the 4×4 matrix

5 6 9 10
4 7 8 11
3 2 13 12
0 1 14 15

.
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C.4 Traversing the Peano Curve

The Peano curves P0, P1, and P2 of Figure Ans.62 have 1, 32, and 34 nodes, respec-
tively. In general, Pn has 32n nodes, numbered 0, 1, 2, . . . , 32n − 1. This suggests
that the Peano curve [Peano 90] is somehow based on the number 3, in contrast
to the Hilbert curve, which is based on 2. The coordinates of the nodes vary from
(0, 0) to (n−1, n−1). It turns out that there is a correspondence between the node
numbers and their coordinates [Cole 85], which uses base-3 reflected Gray codes
(Section 4.2.1)

A reflected Gray code [Gray 53] is a permutation of the i-digit integers such
that consecutive integers differ by one digit only. Here is one way to derive these
codes for binary numbers. Start with i = 1. There are only two 1-bit digits, namely,
0 and 1, and they differ by 1 bit only. To get the RGC for i = 2 proceed as follows:

1. Copy the sequence (0, 1).
2. Append (on the left or on the right) a 0 bit to the original sequence and a

bit of 1 to the copy. The result is (00, 01), (10, 11).
3. Reflect (reverse) the second sequence. The result is (11, 10).
4. Concatenate the two sequences to get (00, 01, 11, 10).
It is easy to see that consecutive numbers differ by one bit only.

� Exercise C.5: Follow the rules above to get the binary RGC for i = 3.

Notice that the first and last numbers in an RGC also differ by one bit. RGCs
can be created for any number system using the following notation and rules: Let
a = a1a2 · · · am be a non-negative, base-n integer (i.e., 0 ≤ ai < n). Define the
quantity pj = (

∑j
i=1 ai) mod 2, and denote the base-n RGC of a by a′ = b1b2 · · · bm.

The digits bi of a′ can be computed by

b1 = a1; bi =




ai if pi−1 = 0;
Odd n

n − 1 − ai if pi−1 = 1.

ai if ai−1 is even;
Even n

n − 1 − ai if ai−1 is odd.

i = 2, 3, . . . , m.

[Note that (a′)′ = a for both even and odd n.] For example, the RGC of the
sequence of base-3 numbers (trits) 000, 001, 002, 010, 011, 012, 020, 021, 022, 100,
101. . . is 000, 001, 002, 012, 011, 010, 020, 021, 022, 122, 121. . . .

The connection between Peano curves and RGCs is: Let a be a node in
the peano curve Pm. Write a as a ternary (base-3) number with 2m trits a =
a1a2 · · · a2m. Let a′ = b1b2 · · · b2m be the RGC equivalent of a. Compute the two
numbers x′ = b2b4b6 · · · b2m and y′ = b1b3b5 · · · b2m−1. The number x′ is the RGC
of a number x, and similarly for y′. The two numbers (x, y) are the coordinates of
node a in Pm.
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All letters come and go—L is here to stay.

Grzegorz Rozenberg


