4.1 SSL: Secure Socket Layer

The following is a dramatization. Alice is hunched over her computer, browsing the
Internet. Her wedding is in a week, and she is still looking for a wedding dress. She
has just found a beautiful cream-colored layered chiffon dress that’s exactly her size
(36-24-36) and is within her price range. It is sold online by ChiffonDresses.com.
Alice takes out her credit card, ready to send her number and order the dress, but her
hand suddenly freezes in midair. She has just remembered that importat transactions
on the Internet require special security. She checks the bottom-left corner of her screen
and yes, there is a small lock, similar to the one shown here, that assures her that (™
the transaction she is about to perform is secure (the URL also changes to https
instead of http). She can order her dress with confidence, being reasonably
certain that no one can intercept and steal her credit card number.

This scenario is common. Most of us perform sensitive transactions over the In-
ternet, and we expect them to be private. Online purchasing is one example. Online
banking, where a bank account can be reviewed by a customer after a PIN is sent, is
another.

This section describes the SSL (secure socket layer) protocol employed by all major
Web browsers, as well as by other software, to secure messages sent over the Internet.
First, a disclaimer. SSL provides secure communications, but cannot guarantee total
security. A credit card number or other sensitive information sent over the Internet
by the SSL protocol is encrypted and cannot be compromised while in transit. When
it arrives at its destination, however, the security provided by SSL ceases and the
information may become vulnerable. A dishonest employee may steal it. An insecure
data base may be taken over by a hacker and its content copied and misused. The
conclusion is simple. Don’t trust SSL all the way. Trust it only for communicating your
sensitive data. If there is any reason to doubt the integrity of the receiver, don’t send
the data. The better business bureau [BBB 03] is one source that can be employed to
evaluate the integrity of a commercial organization.

SSL was developed at Netscape Communications, Inc. in 1994 in response to users’
demand for secure Internet communications. It has since evolved and strengthened
considerably by several organizations. Today, the SSL protocol that’s mostly used is
the transport layer security (TLS) and there are other versions of SSL, such as an open
version (openssl) and a version for wireless communications (WTLS).

Two recommended references are [Rescorla 00] and [Thomas 00].

As usual, we assume two protagonists, Alice and Bob. Alice plays the part of
a consumer trying to purchase an item online. Bob is the seller. The SSL protocol
proceeds in the following steps:

1. An authentication protocol is executed by Alice to make sure that Bob is really
who he claims to be. Bob’s public key is sent to Alice as part of the protocol. This
protocol is based on the public-key concept and employs RSA encryption and also a
trusted third party.

2. Alice selects a random key for encrypting her sensitive information. This key is
encrypted with Bob’s public key and is sent to Bob.

3. Alice uses this key to encrypt her sensitive data with DES or another strong



2 4. SSL and MD5

encryption algorithm. Bob uses the same key and algorithm to decrypt the data. Several
messages can be exchanged this way between the two parties in complete privacy.

It is obvious that step 1 is the most important part of SSL. It provides secure
communications over an insecure channel. This step is complex and slow, which is why
it is used only for communicating a short (normally 128-bit) key. The sensitive data
itself is encrypted with a fast cipher. This step depends on a basic property of the RSA
encryption algorithm. Data encrypted with a public key can be decrypted only with
the corresponding private key, but data can also be encrypted with the private key and
decrypted only with the corresponding public key. With this in mind, we start with
a simple authentication protocol. (We use the notation “<message> key” to indicate
a message encrypted with a certain key.) If alice wants to authenticate Bob, she can
him send a short message and have Bob encrypt it with his private key and return the
result.

Alice — Bob: Authenticate this.
Bob — Alice: <Authenticate this> Bob’s private key.

Alice now decrypts this with Bob’s public key. If the result matches her original
message, she has authenticated Bob. This simple protocol has two drawbacks as follows:

1. Alice must know Bob’s public key. If Alice and Bob are members of a group,
say, both are scientists and have been communicating by email for a while, then their
public keys are known to all the group’s members because they are included in each
email message. However, if Bob is an organization, such as a new online store, Alice
may not have its public key. Even if Bob sends his public key to Alice, she cannot be
sure that it really came from Bob’s store; it could have been sent by Eve pretending to
be Bob and trying to steal Alice’s card number.

2. Encrypting a message with your private key and sending it to Alice leads to weak
security. Remember that Alice has the original message. If she also has its private-key
encryption, she may use both to pretend to be Bob.

Our simple protocol needs improvements. The first one eliminates the need to
encrypt Alice’s message with Bob’s private key. Instead, Bob selects a new message,
computes its message digest, encrypts the digest with his private key, and sends the
(plain) message and the encrypted digest to Alice.

Alice — Bob: Looking for Bob.
Bob — Alice: I’m Bob, <Digest[I’m Bob]> Bob’s private key.

The digest of a message is a function of the message with the following useful
properties: (1) It is practically infeasible to compute the original message from its
digest and (2) the chance of finding another message that will produce the same digest is
extremely small. In practice, a digest is a hash function that hashes text of any length to
a small (typically 128-bit) number. The SHA-1 MD5 hash function is currently popular
as a digest generator. It has replaced the (somewhat similar) MD5 function, which is
described below.

With this protocol, Bob still has to send a message (I’m Bob) and the encrypted
version of its digest (this is known as a digital signature), but now he can select the



4.1 SSL: Secure Socket Layer 3

message, which gives him more protection from an unscrupulous Alice. The protocol
constitutes authentication because Alice has a plain message and the private-key en-
cryption of its digest. She can decrypt the digest, digest the message, and compare the
two digests. There is still the problem of having Bob’s public key and being certain
that it is Bob’s, and no one else’s public key. Here is what may happen if Eve pretends
to be Bob.

Alice — Bob: I’'m looking for Bob.

Eve — Alice: I’m Bob, Eve’s-public-key.

Alice — Bob: Are you?

Eve — Alice: 0f course I am, <Digest[0f course I am]> Eve’s private key.

The solution to this dilemma involves a third, trusted party, an escrow, that issues
certificates. When Bob opens his store, he applies for a certificate from an escrow. The
escrow company sends an inspector to check Bob and his facilities, and look at their
operations and identification. If all is satisfactory, a certificate is issued, but it has an
expiration date and has to be renewed periodically. Admittedly, this solution is not
elegant. In principle, we would like a protocol that involves just the two communicating
parties, but in practice a third party is needed. A certificate contains the following fields
(Figure 4.1):

The name of the certificate issuer (the escrow).

A digital signature of the certificate issuer.

The name of the subject, Bob (the entity for which the certificate is issued).
The subject’s public key.

The certificate’s expiration date.

CU N

Certificate Viewer

— Certificate Properties

|zsuer: First Data Digital Certificates Inc. Certification Authority First Data
Digital Certificates Inc. US

Expiration: Wed, Jul 3, 2019
Fingerprint: CE:AQ2VEC: PA:68:A4:2C:1 4:65:90:6D:24:36:49:69:00

=

Figure 4.1: A Certificate

Figure 4.3 is a detailed listing of the fields of a typical certificate.



4 4. SSL and MD5

Many organizations apply for certificates, so there must be many certificate issuers.
Alice doesn’t know all of them. She can be expected to know only a few. There is
therefore a need for root certificate issuers. Every leading Web browser comes with a
list of root certificates preinstalled. A root certificate (also known as a CA or certificate
authority) belongs to a trusted authority that can issue certificates to other, smaller
certificate issuers after checking each to make sure it can be trusted. The encryption
preferences (or security preferences) menu of the browser can display the list of CA
certificates it knows. If the certificate has expired, the browser displays a dialog box
similar to Figure 4.2 that gives the user a choice to continue the sensitive web session
or terminate it.

‘www . fortifiy.net'. There is a problem with the security
certificate from that site (The identity certificate has
expired.)

@ Lnable to establish a secure connection to

The information you view and send will be readable to
others while in transit, and it may not go to the intended

party.

Continue loading this page?

Figure 4.2: An Expired Certificate

With certificates, the SSL protocol proceeds as follows:

Alice — Bob: I’m looking for Bob.

Bob — Alice: I’m Bob, Bob’s certificate.

Alice — Bob: Are you really?

Bob — Alice: Definitely, <Digest[Definitely]> Bob’s private key.

It is the certificate that provides Alice (or, in practice, her Web browser) with
Bob’s public key. To verify that this is really Bob’s certificate, Alice’s browser reads the
certificate’s issuer name (say, Y) and signature from the certificate. The digital signature
contains the issuer’s own certificate, which has been issued by one of the root issuers
(call it X). The browser has a list of the root certificate issuers and it communicates
with root issuer X to verify the certificate of issuer Y. This is a slow, tedious process, so
it is used as little as possible.

Eve may try to impersonate Bob in this protocol, so we have to keep her in mind.
She can execute step 2 in the protocol, because she may have Bob’s certificate from



4.1 SSL: Secure Socket Layer 5

a past transaction with him, but she cannot execute step 4 because she doesn’t have
Bob’s private key.

The protocol above is the first and most important step in the complete, three-step
SSL protocol. Once it has been executed, Alice is confident that she is dealing with Bob
and that she has his public key. In the second step, Alice (or rather her browser) selects
a random number to serve as a secret key and sends it to Bob, encrypted with his public
key, as a short message. Only Bob can decrypt this message, but again we have to place
ourselves in Eve’s shoes. What can she do? She cannot decrypt this short message, but
she can damage it on its way to Bob. This may be useful to Eve, so the SSL protocol
must have a way for Bob to identify damaged messages. One way of verifying a message
is to append to it a message authentication code (MAC) that consists of a digest of the
message and of the secret key. Eve doesn’t know the secret key, so she cannot generate
the MAC. Here is the revised protocol

Alice — Bob: Is this Bob?

Bob — Alice: I’m Bob, Bob’s certificate.

Alice — Bob: Are you really?

Bob — Alice: Definitely, <Digest[Definitely]> Bob’s private key.
Alice — Bob: You have been authenticated.

Alice — Bob: Here is our new key <secret-key> Bob’s public key.
Alice computes: MAC=Digest[My CC # is 12345, secret-key].

Alice — Bob: <My CC # is 12345, MAC> secret-key.

Bob knows to expect two-part messages, where the second part consists of the MAC
of the first part. Any corrupted message can easily be identified by Bob. Once Bob
has received the new secret key (normally, 40, 56, or 128 bits) from Alice, the two can
exchange messages with confidence. The messages are encrypted with this key by a
secure, fast algorithm, such as DES or RCA4.

As noted earlier, SSL was developed at Netscape Communications in 1994. Just a
year later, several hackers discovered a weakness in the first SSL version. It turned out
that the secret key was selected by a pseudo-random number generator (PRNG) whose
seed was a combination of the current time (just the seconds and microseconds) and
the process id. Netscape programmers believed that such a combination was sufficiently
random and would lead to pseudo-random numbers that could be used as secure keys.
However, someone intercepting information packets sent by a browser can have a good
idea of the time (in seconds) when the packets were generated. Also, someone with
access to any account on the operating system where the Netscape browser is running
can find the id of any process. The microseconds part of the seed can then be found
by trying the million values between 0 and 999,999. It seems that Netscape has since
improved the way the seed of the PRNG is computed.

Example of a Certificate.
Figure 4.3 is a detailed listing of the fields of a typical certificate. The issuer part

and the subject part have the fields C (two-letter international country code), ST (state
or province), L (locality), 0 (organization name), and 0U (organizational unit).



Certificate:

Data:

Version: 1 (0x0)
Serial Number: 0 (0x0)
Signature Algorithm: md5WithRSAEncryption

Issuer:
Cc=Us,
ST=NC,
L=Cary,

0=My New Outfit, Inc.,

0U=Sales,
CN=ntbox.somewhere.com/Email=me@somewhere.com

Validity

Not Before:
Not After

Subject:
C=US,
ST=NC,
L=Cary,

0=My New QOutfit, Inc.,

OU=Sales,
CN=ntbox.somewhere.com/Email=me@somewhere.com

Subject Public Key Info:

4,

SSL and MD5

Oct 7 04:19:24 1999 GMT

: Oct 6 04:19:24 2000 GMT

Public Key Algorithm: rsaEncryption
(1024 bit)
Modulus (1024 bit):

RSA Public Key:

Exponent:

ica:
:34:

lc:
b5:
:f1:

ab:
b8:

65537 (0x10001)

Signature Algorithm: md5WithRSAEncryption

4f:27:7b:
Tb:24:£8:
e4:c1:88:
9c:cc:b4d:
72:7f:e8:
38:86:b8:
82:aa:90:
cd:4de

:50:19:09:
:35:05:64:54:ec:b5e:
:28:7e:7e:ab:5f:61:
:€6:b8:35:0a:01:b7:
:48:ba:26:8e:ed:41:
:57:0£:70:4b:a6:18:
:e5:64:02:0d4:01:4e:

Figure 4.3:

98:e6:3b:08:9b:4b:

A Detailed Certificate



4.2 MD5 Hashing 7

References

BBB (2003) is URL www.bbbonline. com.

Rescorla, Eric (2000) SSL and TLS: Designing and Building Secure Systems, Reading,
MA, Addison Wesley.

Thomas, Steven A. (2000) SSL and TLS Essentials: Securing the Web, New York, John
Wiley.

4.2 MD5 Hashing

MD5 (short for “message digest 5”) is a hash function developed by Ronald Rivest
in 1992 ([Rivest 92] and [rfc1321 03]) to serve as a fast and secure message digest for
digital signature applications. MD5 inputs a message of any length and hashes it to a
128-bit number that can serve as a fingerprint of the message. MD5 was designed to be
especially fast on 32-bit machines. MD5 is an extension of the similar MD4 algorithm
[Rivest 91]. It is somewhat slower than MD4 but is deemed more secure. Based on
the experience of the algorithm’s developer it is conjectured (although not proved) that
it is computationally infeasible to generate a message whose MD5 digest will equal a
given 128-bit number or to find two nontrivial messages that have the same MD5 digest.
Specifically, it is conjectured that the difficulty of coming up with two messages that
will have the same MD5 output is on the order of 264 operations, and the difficulty of
finding a message that has a given MD5 digest is on the order of 2!?® operations.

Computations in MD5 are based on 32-bit words. Thus, the symbol “+” indicates

modulo 232 addition of 32-bit words, and other symbols also correspond to operations
on 32 bits.

We start with a b-bit message where b is an arbitrary nonnegative integer. It can be zero
and doesn’t have to be a multiple of 8 or of any other number. The bits are denoted by
myg through m;_;. Hashing the message is done by scrambling its bits in five steps as
follows:

Step 1. Append padding bits. The message is extended by appending bits until its
length becomes 64 bits less than the next multiple of 512. We say that the extended
message size is congruent to 448 modulo 512. Padding is always done, even if the original
length b of the message satisfies the above condition. This implies that at least one bit
and at most 512 bits are appended. The first bit appended is a 1 and the remaining
bits are zeros.

Step 2. Append length. The value of b (the original length of the message) is now
appended to the extended message as a 64-bit number. If b is greater than 264 — 1, only
the 64 least-significant bits of b are appended (the message length cannot be deduced
from its 64 least-significant bits, but there is no need to deduce it). The message length
at this point is a multiple of 512, so it is also a multiple of 16x32. We denote the number
of 32-bit words in the message by N (N is a multiple of 16) and the words themselves
by M(0) through M(N —1).



8 4. SSL and MD5

Step 3. Initialize buffer. A 4-word buffer denoted by A, B, C, and D is allocated. They
are initialized to the following values

A — 0123456716, B« 89abcdef16, C fedcba9816, D+ 7654321016

The final 128-bit result will be computed in these four 32-bit words.

Step 4. Process message. The hashing of the message involves four functions denoted
by F, G, H, and I, a 16-word array X, a 64-word table T, four words denoted by AA, BB,
CC, and DD, and shifts and logical operations. Each of the four functions receives three
32-bit words as input parameters and computes one word. The definitions of the four
functions are

F(X,Y,Z) = (XxY)V (not(X)xZ), GX,Y,Z)=(XxZ)V(Yxnot(Z)),
H(X,Y,Z)=XxorY xor Z, I(X,Y,Z)=Y xor (X V not(2)),

where x, V, and, xor indicate logical AND, OR and XOR, respectively.

A table T of 64 constants is first computed, such that element T[i] (for i values 1
through 64) becomes the integer part of the product of abs(sin(i)) (where i is in
radians) and the constant 4294967296. This table serves to further scramble the bits of
the message.

The computations consist of steps where each step processes a block of 16 nonconsecutive
words from the message. FEach step consists of four rounds. Each round starts by
initializing array X to a block of 16 different words from the message, then scrambles
the values of A, B, C, and D by means of T, X, and one of the four functions. Here are
the details (the notation X <<< s denotes an s position, left-circular shift of X).

for i=0 to N/16-1 do {loop on blocks}
for j=0 to 15 do
X[j1:=M[i*16+j]
endfor {j}
AA:=A; BB:=B; CC:=C; DD:=D;
{Round 1. We denote by [abcd k s i] the operation
a=b+((a+F(b,c,d)+X[k]+T[i])<<<s).
Round 1 consists of the following 16 operations}
[ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4]
[ABCD 4 7 5] [DABC 5 12 16] [CDAB 6 17 7] [BCDA 7 22 8]
[ABCD 8 7 91 [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]
[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16]
{Round 2. We denote by [abcd k s i] the operation
a=b+((a+G(b,c,d)+X[k]+T[i])<<<s).
Round 2 consists of the following 16 operations}
[ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20]



4.2 MD5 Hashing 9

[ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]
[ABCD 9 b5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]
[ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32]
{Round 3. We denote by [abcd k s i] the operation
a=b+((a+H(b,c,d)+X[k]+T[i])<<<s).
Round 3 consists of the following 16 operations}
[ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]
[ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]
[ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]
[ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]
{Round 4. We denote by [abcd k s i] the operation
a=b+((a+I(b,c,d)+X[k]+T[i])<<<s).
Round 4 consists of the following 16 operations}
[ABCD O 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]
[ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]
[ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]
[ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64]
{final operations}
A:=A+AA; B:=B+BB; C:=C+CC; D:=D+DD;
endfor {i}

Step 5. Output. The final output is the four words A, B, C, and D, each read as four
bytes from right to left. Thus, the most-significant byte of the 128-bit output is the
least-significant byte of A, and the output ends with the most-significant byte of D.

(End of the five steps.)

The MD5 algorithm is based on the long experience of its creator. It has been used
extensively for since its inception about a decade ago and no weaknesses have been
discovered.

References

rfc1321 (2003) is URL http://www.ietf.org/rfc/rfc1321.txt.

Rivest, R. (1991) “The MD4 message digest algorithm,” in A. J. Menezes and S. A.
Vanstone, editors, Advances in Cryptology: CRYPTO ’90 Proceedings, pages 303-311,
New York, Springer-Verlag.

Rivest, R. (1992) “The MD4 Message Digest Algorithm,” RFC 1320, MIT and RSA
Data Security, Inc., April.



